Numerical Methods - Preliminaries

Y. K. Goh

Universiti Tunku Abdul Rahman

2013

Table of Contents

- Introduction to Numerical Methods
 - Numerical Methods in Ancient Civilisations
 - Brief Applications of Various Topics in Numerical Methods
- Sources of Errors
- Truncation Error
 - Geometric Series
 - Taylor Series
- Round-off Error
 - Finite Precision Computer Arithmetic
 - Computer Number Systems
 - Loss of Significant Digits
- 6 Appendix
 - Review on Calculus
 - Decimal, binary and hexadecimal

- Introduction to Numerical Methods
 - Numerical Methods in Ancient Civilisations
 - Brief Applications of Various Topics in Numerical Methods
- Sources of Errors
- Truncation Error
 - Geometric Series
 - Taylor Series
- Round-off Error
 - Finite Precision Computer Arithmetic
 - Computer Number Systems
 - Loss of Significant Digits
- 6 Appendix
 - Review on Calculus
 - Decimal, binary and hexadecimal

Introduction to Numerical Methods

- One of the earliest and most practical branches of mathematics.
- For ancient civilisations, the study of numerical methods, like trigonometry, is extremely important in:
 - constructions, carpentry, taxation, navigation, astronomy, calendar, ...
- Modern applications:
 - Computational fluid mechanics
 - Rocket trajectories
 - Numerical Weather Prediction
 - Engineering
 - Chemical reactions
 - Betting in football tournament
 - Insurance premiums

- Introduction to Numerical Methods
 - Numerical Methods in Ancient Civilisations
 - Brief Applications of Various Topics in Numerical Methods
- Sources of Errors
- Truncation Error
 - Geometric Series
 - Taylor Series
- Round-off Error
 - Finite Precision Computer Arithmetic
 - Computer Number Systems
 - Loss of Significant Digits
- 6 Appendix
 - Review on Calculus
 - Decimal, binary and hexadecimal

Example (A Babylonian Example)

- Put away your calculator, and do this example with only pen and paper.
- Consider a metal of square shape, the lengths on 4 sides are 1 meter, you need to fix a string along two ends of the diagonal, what is the length of string accurate to mm?
- The exact answer is $\sqrt{2}$.
- However to prepare the string we need a numerical value.
- Can you approximate the value of $\sqrt{2}$ accurate to 3 decimals?

Key Concepts:

• exact value, numerical value, approximation, accuracy

Example (A Babylonian Example)

- Babylonian clay tablet YBC7289 (c. 1800 1600 BC). [Source: Wikipedia]
- \bullet The Babylonian recorded the value of $\sqrt{2}$ in sexagesimal as 1;24,51,10.
- In our modern language, the value of $\sqrt{2}$ in decimal is $1.4142\ldots$, ie $\sqrt{2}\approx 1+\frac{24}{60}+\frac{51}{60^2}+\frac{10}{60^3}+\cdots=1.41421296\ldots$

Key Concepts:

number systems: decimal, sexagesimal

Example (How Babylonian calculate $x = \sqrt{S}$)

- \bullet First algorithm used for approximating \sqrt{S}
- Recorded by the first century Greek mathematician Heron's of Alexandrian.
 - choose a number x_0 as an initial guess for x.
 - improve the guess with

$$x_1 = \frac{1}{2} \left(x_0 + \frac{S}{x_0} \right)$$

• similarly, we can further improve the approximation by the iterative formula $x_{n+1} = \frac{1}{2} \left(x_n + \frac{S}{x_n} \right)$ for $n = 1, 2, \dots$

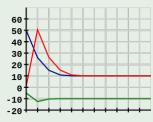


Figure: Convergence of Heron's method to evaluate $\sqrt{100}$.

Key Concepts:

• algorithm, initial value, iteration, convergence, fixed points

Example (How Ancient Indian calculate $x = \sqrt{S}$)

- Recorded in Bakhshali manuscript (approximately 400 AD).
- Algorithm:
 - Let N^2 be the nearest perfect square to S.

 - $\bullet \ d = S N^2$ $\bullet \ P = \frac{d}{2N}, \ \text{and} \ A = N + P$
 - $\sqrt{S} \approx A \frac{P^2}{2A}$
- For example, to evaluate $\sqrt{5.3}$, the nearest perfect square is $N^2=2^2=4$.
- Thus, d = 1.3, P = 0.325, A = 2.325, and finally the approximation $\sqrt{5.3} \approx 2.302285$.
- Alternatively, the algorithm can be written as $\sqrt{S} \approx \frac{N^4 + 6N^2S + S^2}{4N^3 + 4NS}$.

Key Concepts:

• there are always alternative algorithms to solve the same problem.

- Introduction to Numerical Methods
 - Numerical Methods in Ancient Civilisations
 - Brief Applications of Various Topics in Numerical Methods
- Sources of Errors
- Truncation Error
 - Geometric Series
 - Taylor Series
- Round-off Error
 - Finite Precision Computer Arithmetic
 - Computer Number Systems
 - Loss of Significant Digits
- 6 Appendix
 - Review on Calculus
 - Decimal, binary and hexadecimal

Brief Applications of Various Topics in Numerical Methods

Let breifly outline the topic in numerical methods that we will cover in this course:

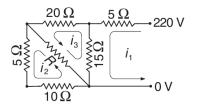
- Chapter 2 Solving non-linear equation(s).
- Chapter 3 Solving system of linear equations.
- Chapter 3 Finding eigenvalues
- Chapter 4 Interpolations
- Chapter 5 Differentiations and integrations
- Chapter 6 Ordinary differential equation initial-value problem
- Chapter 7 Ordinary differential equation boundary-value problem
- Chapter 8 Partial differential equation

In the next few slides, we will see some of the examples how these topics applied in various situations.

Matrix – Solving system of linear equations

Example (Electrical networks)

- The following electrical network can be viewed as consisting of 3 loops.
- Applying Kirchoff's law, \sum voltage drops = \sum voltage sources to each loop, we get:



$$5i_1 + 15(i_1 - i_3) = 220$$

$$R(i_2 - i_3) + 5i_2 + 10i_2 = 0$$

$$20i_3 + R(i_3 - i_3) + 15(i_3 - i_1) = 0$$

- What are the value of the currents i_1, i_2 and i_3 if given R = 4.2?
- Essentially the system of linear equations can be re-written as a matrix equation and solving for the currents involve inverting a coefficient matrix.

Curve fitting – Finding a function f(x) to describe data

Example (Fitting Data)

- Consider the observed data (left figure) for the vertical velocity of an UFO.
- \bullet The data are recorded poorly, can we find a function v(t) that best fit the velocity data on the UFO?

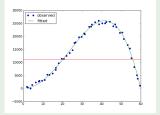


- We can apply a numerical curve fitting algorithm to the data, and the outcome is a function $v(t) = 40 + 32t^2 0.013t^4 + 0.00025t^{4.683}$.
- The fitted function is plotted as a curve in the right figure.

Root finding – Solving a non-linear equation f(x) = 0

Example (Root finding)

• We know the escape velocity for the Earth is 11200 m/s, find the time at which the UFO reach the Earth escape velocity.

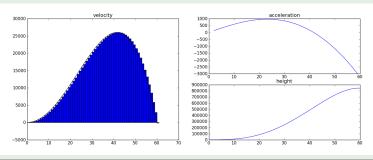


- ullet Mathematically the problem is to find the interceptions for the curve v(t) and straight line v=11200 as in the figure.
- equivalently, we want to find the value of t where f(t)=0, where $f(t)=v(t)-11200=40+32x^2-0.013x^4+0.00025x^{4.683}-11200$.
- \bullet From the bisection method, we found the times that the UFO will reach esscape velocity are t=20.14, or t=55.90.

Numerical Integration / Differentiation

Example (Root finding)

- Now that we know how the UFO moves vertically, we can further estimate the UFO's height and acceleration.
 - Integration of the vertical velocity gives the height.
 - Differentiation of the vertical velocity gives the acceleration.



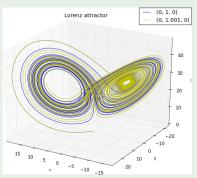
Numerical ODE - Initial Value Problem

Example (Solution of system of ODEs with different initial values)

 In 1963, Edward Lorenz developed a simplified mathematical model for atmospheric convection.

$$\frac{dx}{dt} = \sigma(y - x)$$
$$\frac{dy}{dt} = x(\rho - z) - y$$
$$\frac{dz}{dt} = xy - \beta z$$

- The simulation on the right uses: $\sigma=10, \rho=28$, and $\beta=8/3$.
- Note that two close by starting points ended up following very different trajectories.



- Introduction to Numerical Methods
 - Numerical Methods in Ancient Civilisations
 - Brief Applications of Various Topics in Numerical Methods
- 2 Sources of Errors
- Truncation Error
 - Geometric Series
 - Taylor Series
- Round-off Error
 - Finite Precision Computer Arithmetic
 - Computer Number Systems
 - Loss of Significant Digits
- 6 Appendix
 - Review on Calculus
 - Decimal, binary and hexadecimal

Numerical methods in practice

- From the previous slides, we know the aim of Numerical Methods is to find a numerical approximation to the exact solution.
- The approximation should be *close enough* to the exact solution.
 - What is the acceptable tolerance for error?
 - Often this tolerance is the *stopping criteria* for the numerical algorithms.
- Since it is an approximated solution, there is always question that how far the approximation from the exact answer:
 - the is to ask: what is the error? (absolute error)
 - related questions are: is the error "big"? (relative error)
 - what are the possible sources of errors?
- The numerical approximations are the outcomes.
- In Numerical Methods, we are also interested how to get these outcomes:
 - Can we systematically re-produce the outcomes? (algorithms)
 - Are there any alternative algorithm that is faster or more accurate?
 - Under what kind of conditions the algorithm will not work? (ill-posed) problems)
 - Often the algorithm is iterative, will the iterations be stable? (converge)

4日 > 4回 > 4 至 > 4 至 >

Sources of Errors

Possible sources of errors:

- Truncation errors
 - · "Intrinsic" error in a method
 - often occurs due to representing a series (infinite sum) with a finite sum e.g. as in Taylor's series.
- Round-off errors
 - Due to limitation of computing device.
 - Computer arithmetic is finite, that is to say computer stores number using a finite amount of memories.
 - Round-off errors arised once an exact decimal number, like 3.28, is stored as a finite memory floating point number.
- Data uncertainty (not considered)
- Inappropriate model (not considered)

We will discuss truncation errors and round-off errors in more details.

- Introduction to Numerical Methods
 - Numerical Methods in Ancient Civilisations
 - Brief Applications of Various Topics in Numerical Methods
- Sources of Errors
- Truncation Error
 - Geometric Series
 - Taylor Series
- Round-off Error
 - Finite Precision Computer Arithmetic
 - Computer Number Systems
 - Loss of Significant Digits
- 6 Appendix
 - Review on Calculus
 - Decimal, binary and hexadecimal

- Introduction to Numerical Methods
 - Numerical Methods in Ancient Civilisations
 - Brief Applications of Various Topics in Numerical Methods
- Sources of Errors
- Truncation Error
 - Geometric Series
 - Taylor Series
- Round-off Error
 - Finite Precision Computer Arithmetic
 - Computer Number Systems
 - Loss of Significant Digits
- 6 Appendix
 - Review on Calculus
 - Decimal, binary and hexadecimal

Geometric Series

Example

 To get a feel on what is truncation error, let consider the formula for geometric series:

$$\frac{a}{1-r} = \sum_{n=0}^{\infty} ar^n.$$

- Consider the case where a=1 and $r=\frac{1}{4}$, we have $\frac{4}{3}=\sum_{n=0}^{\infty}4^{-n}$.
- Here, the RHS is a sum up to infinite many terms of 4^{-n} to give the exact value of the LHS, ie $\frac{4}{3}$.
- However, it is unlikely that a human or a computer can sum up to infinite many terms, we have to stop somewhere.
- Let say we stop after 10 terms, then we have the approximation for $\frac{4}{3}$ which is $\sum_{n=0}^{9} 4^{-n} = 1.3333320617675781...$
- Stopping after 10 steps broke the equal sign and the resulting error is called the truncation error. In this case the truncation error is $\sum_{n=10}^{\infty} 4^{-n}$.

- Introduction to Numerical Methods
 - Numerical Methods in Ancient Civilisations
 - Brief Applications of Various Topics in Numerical Methods
- Sources of Errors
- Truncation Error
 - Geometric Series
 - Taylor Series
- Round-off Error
 - Finite Precision Computer Arithmetic
 - Computer Number Systems
 - Loss of Significant Digits
- 6 Appendix
 - Review on Calculus
 - Decimal, binary and hexadecimal

Approximation by Taylor's series

Let say we would like to calculate $\cos(0.1)$, but do not have a scientific calculator or lookup table.

- We know cos(0) = 1.
- We know all the derivatives of \cos at 0.
- Taylor series for cos is

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

- ullet Thus, we can "calculate" $\cos(0.1)$ from its Taylor's series.
- Reality: we cannot calculate exactly $\cos(0.1)$, as we are not be able to tabulate all the infinite sum of Taylor's series, but we can approximate it with a Taylor's polynomial.
- The series is truncated after a certain term.
- We can generalise the example for geometric series to Taylor series.

Approximation by Taylor's series

Example

- First approximation, $cos(0.1) \approx 1$
- Subsequent approximation:

$$\cos(0.1) \approx 1 - (0.1)^2/2! = 0.9950$$

$$\cos(0.1) \approx 1 - (0.1)^2/2! + (0.1)^4/4!$$

$$= 0.99500416666667$$

$$\cos(0.1) \approx 1 - (0.1)^2/2! + (0.1)^4/4! - (0.1)^6/6!$$

$$= 0.99500416527778$$
:

ullet Numerical approximation correct to 14 d.s.p $\cos(0.1)=0.99500416527803.$

Approximation by Taylor's series

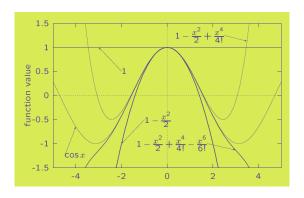


Figure: Taylor's series approximation of cos(x)

Taylor Polynomial and Series

Theorem (Taylor's Theorem)

Suppose $f \in C^n[a,b]$ and $f^{(n+1)}$ exists on [a,b]. Let $x_0 \in [a,b]$. For every $x \in [a,b]$, there exists a number $\xi(x)$ between x_0 and x such that

$$f(x) = P_n(x) + R_n(x)$$

where

$$n\text{-th Taylor Polynomial, }P_n(x)=\sum_{k=0}^n\frac{f^k(x_0)}{k!}(x-x_0)^k,$$

$$\text{Remainder, }R_n(x)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)^{n+1}.$$

Key Numerical Methods questions

Some of the key questions in numerical analysis:

- What is the estimated value and its estimated error?
- What is the maximum error? (bounds of remainder)
- Let the acceptable error be ϵ_a , how many approximation steps I need to do?
- In what situation the method will not work? (radius of convergence)

Exercise

Example

Let consider the Taylor's series approximation for ln(0.9).

- Write down the Taylor's polynomial of order n, $P_n(x)$ and its remainder $R_n(x)$ for $\ln(1+x)$.
- Approximate ln(0.9) by $P_5(x)$. What is the absolute error?
- What is the maximum error if it is approximated by $P_n(x)$.
- How many terms need to be included, i.e. what is n, in order for the Taylor's polynomial to have error less than an acceptable tolerance of $\epsilon = 10^{-8}$?
- ullet Can we use the Taylor's polynomial to approximate $\ln(1.8)$? Why?
- How about to approximate ln(2.4)? Why?

- Introduction to Numerical Methods
 - Numerical Methods in Ancient Civilisations
 - Brief Applications of Various Topics in Numerical Methods
- Sources of Errors
- 3 Truncation Error
 - Geometric Series
 - Taylor Series
- Round-off Error
 - Finite Precision Computer Arithmetic
 - Computer Number Systems
 - Loss of Significant Digits
- 6 Appendix
 - Review on Calculus
 - Decimal, binary and hexadecimal

- Introduction to Numerical Methods
 - Numerical Methods in Ancient Civilisations
 - Brief Applications of Various Topics in Numerical Methods
- Sources of Errors
- Truncation Error
 - Geometric Series
 - Taylor Series
- 4 Round-off Error
 - Finite Precision Computer Arithmetic
 - Computer Number Systems
 - Loss of Significant Digits
- 6 Appendix
 - Review on Calculus
 - Decimal, binary and hexadecimal

Finite Precision Computer Arithmetic

- Often we use a computer to implement our numerical algorithms.
- We must aware that computer is a finite precision arithmetic machine.
- That is to say, computer uses limited memory to store numbers, and cannot distinguish numbers that is smaller than a fixed value (machine epsilon) from zero.
- Another word, we cannot hope to use a computer to calculate a numerical approximation correct to the number of digits that beyond the resolution of machine epsilon.
- For example, the machine epsilon of a 64-bit floating-point is $\approx 2 \times 10^{-16}$, thus it is not possible (usually) to compute a numerical approximation accurate to 17 decimal places.
- ullet As a result, some real numbers like $1/3=0.333333\ldots$ will not be represented by computer exactly, but to the best possible within the allocated memory.
- The resulting error is called the round-off error, and the number stored in the finite allocated memory of computer is called the floating-point number UTPR

Finite Precision Computer Arithmetic

Example

• The python code below demonstrates that the computer arithmetic is finite:

```
eps = 1.0
while 1.0 - eps < 1.0:
    print "eps = ", eps
    eps = eps/10.
print "Escaped!"
```

• The output looks as follow:

```
eps = 1.0
eps = 0.1
eps = 0.01
eps = 1e-15
eps = 1e-16
Escaped!
```

- Introduction to Numerical Methods
 - Numerical Methods in Ancient Civilisations
 - Brief Applications of Various Topics in Numerical Methods
- Sources of Errors
- Truncation Error
 - Geometric Series
 - Taylor Series
- Round-off Error
 - Finite Precision Computer Arithmetic
 - Computer Number Systems
 - Loss of Significant Digits
- Appendix
 - Review on Calculus
 - Decimal, binary and hexadecimal

Computer Number System

Some of the basic "Numbers" in computer:

- Booleans (true or false)
- Integers (unsigned and signed)
- Floating-points (single, double)
- Complex floating-points (a + jb)

Computer Integers

There are several schemes to represent numbers in computer. All the schemes are in Base-2.

Example (unsigned 8-bit integers)

- ullet uint8 or uchar numbers are positive integers that stored in 8-bit memory. It can only takes $2^8=256$ different values.
- Smallest value of uint8: $0000 \ 0000_2 = 0$.
- Largest value of uint8: $1111 \ 1111_2 = 255 = 1 2^8$.

Example (signed 8-bit integers)

- int8 or char numbers are uint8 integers that biased/shifted by $shift=-2^7.$
- Smallest value of int8: $0000 \ 0000_2 + shift = 0 128 = -128$.
- Largest value of int8: $1111 \ 1111_2 + shift = 127$.

Computer Integers

Example (32-bit integers)

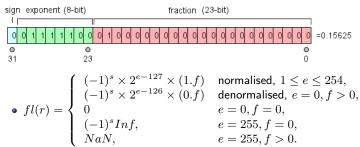
- int32 are integers that stored in 32-bit memory and baised/shifted by -2^{31} . It can takes $2^{32} = 4294967296$ different values.
- Smallest value of int32: $0-2^{31}=-2147483648$.
- Largest value of int32: $(2^{32} 1) 2^{31} = 2147483647$.

Floating-Points

- Real numbers are represented as finite memory floating-point numbers.
 Usually 32-bit (single precission) or 64-bit (double precission)
- A commonly used floating-point standard is the IEEE 754 standard.
- Any real number may be expressed as $r = sign \times m \times 2^e$, where $m = (0.b_1b_2b_3...)_2$ is called the mantissa and e is the exponent.
- The floating point representation of the real number r is denoted as fl(r), where usually m and e are stored in finite bits of memory.

IEEE 754 Single-precision

A floating-point format uses 32-bit memory.



- s 1-bit sign bit
- e 8-bit biased exponent
- m 23-bit fraction

IEEE 754: Example

Example

What is the value of the IEEE single-precision floating point number represented by the following binaries?

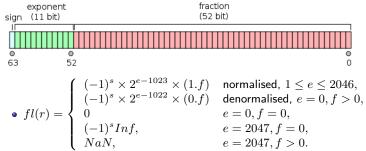
- 00111110 00100000 00000000 00000000 [Ans.: 0.15625]
- ullet 11111111 1111111 1111111 11111111 [Ans.: NaN]

Example

- \bullet Show that 1313.3125_{10} is 10100100001.0101 in base-2.
- Put the base-2 value into a normalized form.
- \bullet Write down the IEEE 754 single-precision representation for $1313.3125_{10}.$ [Ans.: 1|10001001|010010000101010000000000]

IEEE 754 Double-precision

A double floating-point uses 64-bit memory.



- ullet s 1-bit sign bit
- e 11-bit biased exponent
- m 52-bit fraction

Summary of Range and Precision

Туре	Exp. bias	Low Limit	High Limit	Fraction	Precision	Significant digits
Single (32/23 fp)	127	$2^{-126} \approx 10^{-38}$	$2^{128} \approx 10^{38}$	23	$2^{-24} \approx 10^{-7}$	7
Double $(64/52 \text{ fp})$	1023	$2^{-1022} \approx 10^{-308}$	$2^{1024} \approx 10^{308}$	52	$2^{-53} \approx 10^{-16}$	16

Machine Espilon and Precision

- Range gives the limits of the values could be represented by a floating-point format. That is the numbers covered by Low Limit and High Limit in the previous slide.
- ullet Errors that can happen when assigning a real number x to a variable in a program:
 - Overflow: example: $x=2^{1920}$, this will maps to the machine number INF.
 - Underflow: example: $x=2^{-1920}$, this will maps to the machine number 0.0.
 - Roundoff error: This happen when the real number cannot be represented exactly in Base-2, and will be replaced by the nearest machine number.
- In additions, errors or rather unexpected results will happens after certain arithmetic operations. We call this **Loss of significant digits**.

Roundoff Error

Example

Let fl(x) be the floating-point representation of a real number x=1/3 on a 16-bit register with 1 sign bit, 5 exponent bits with 15 bias, and 10 mantissa bits.

- What is the the machine epsilon?
- What is bit representation of fl(x)? [ANS: fl(x) = 0|01101|0101010101 = 0.3332519531]
- What is the roundoff error?
- Whenever representing a real number x to a floating-point format fl(x), the conversion suffer from round-off error.
- Let say $2^e \le x \le 2^{e+1}$ and the number of bits in fraction field is n, then x will be rounded to its nearest floating-point, which is either
 - $(-1)^s \times (1.a_1a_2...a_n)_2 \times 2^e$, or
 - $(-1)^s \times [(1.a_1a_2...a_n)_2 + \frac{1}{2^n}] \times 2^e$, or
- This gives the rounding error, $\epsilon_{fl} = |x fl(x)| \leq \frac{1}{2} 2^{e-n}$.
- i.e. the relative error,

$$\epsilon = \frac{|x - fl(x)|}{|x|} \le \frac{\frac{1}{2}2^{e-n}}{(1 \cdot a_1 a_2 \dots a_n)_2 \times 2^e} \le \frac{\frac{1}{2}2^{e-n}}{2^e} = 2^{-n-1}.$$

Outline

- Introduction to Numerical Methods
 - Numerical Methods in Ancient Civilisations
 - Brief Applications of Various Topics in Numerical Methods
- Sources of Errors
- Truncation Error
 - Geometric Series
 - Taylor Series
- Round-off Error
 - Finite Precision Computer Arithmetic
 - Computer Number Systems
 - Loss of Significant Digits
- 6 Appendix
 - Review on Calculus
 - Decimal, binary and hexadecimal

Loss of Significant Digits - addition

Example

Most computer performing arithmetic operations from left to right, ie. whenever a+b+c it means (a+b)+c. Consider addition in a single precision (roughly 7 significant digits) and single register system

- Calculating $10,000,000 + \underbrace{1. + 1. + 1}_{10 \text{ million times}}$, will get 10,000,000.
- Because $0.1000000 \times 10^8 + 0.1000000 \times 10^1$ gives 0.10000000×10^8 .
- On the other hand, $\underbrace{1.+1.+1.}_{10 \text{ million times}}$ +10,000,000=20,000,000 gives the expected answer.

Add numbers in size order to avoid LSD in addition.

Loss of Significant Digits – substraction

Example

• Let's calculate $x - \sin x$ for x = 1/15.

$$x = 0.66666 66667 \times 10^{-1}$$

$$\sin x = 0.66617 29492 \times 10^{-1}$$

$$x - \sin x = 0.00049 37175 \times 10^{-1}$$

$$= 0.49371 75000 \times 10^{-4}$$

- 3 significant digits from the right are lost.
- Use Taylor's series for $x \sin x \approx x^3/3! x^5/5! + x^7/7!$ instead, which gives $0.49371~74328 \times 10^{-4}$, and the actual value is $0.49371~74327 \times 10^{-4}$.

Substractions of close numbers cause LSD.

Outline

- Introduction to Numerical Methods
 - Numerical Methods in Ancient Civilisations
 - Brief Applications of Various Topics in Numerical Methods
- Sources of Errors
- Truncation Error
 - Geometric Series
 - Taylor Series
- Round-off Error
 - Finite Precision Computer Arithmetic
 - Computer Number Systems
 - Loss of Significant Digits
- 6 Appendix
 - Review on Calculus
 - Decimal, binary and hexadecimal

Outline

- - Numerical Methods in Ancient Civilisations
 - Brief Applications of Various Topics in Numerical Methods

Numerical Methods - Preliminaries

- - Geometric Series
 - Taylor Series
- - Finite Precision Computer Arithmetic
 - Computer Number Systems
 - Loss of Significant Digits
- **Appendix**
 - Review on Calculus
 - Decimal, binary and hexadecimal

49 / 58

Definition (Limit)

A function f(x) is said to have a limit L at a if given any number $\epsilon>0$, we can find an $\delta>0$ such that $|f(x)-L|<\epsilon$ whenever $0<|x-a|<\delta$. We write $\lim_{x\to a}f(x)=L$.

Definition (Continuity)

f(x) is said to be continuous at a if

- $\lim_{x \to a} f(x)$ exists
- f(a) is defined
- $\bullet \lim_{x \to a} f(x) = f(a).$

Definition (Differentiability)

f(x) is differentiable at a if

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$

exists. f'(a) is called the derivative of f(x) at x = a.

Theorem

A function f(x) that is differentiable at a is also f(x) continuous at a.

Theorem (Rolle Theorem)

Suppose $f \in C[a,b]$, differentiable on (a,b), and if f(a)=f(b), then there exists a number $c \in (a,b)$ such that f'(c)=0.

Theorem (Mean Value Theorem)

If $f(x) \in C[a,b]$ and differentiable on (a,b), then there exists a number $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Definition (Riemann Integral)

The Reimann integral of a function f(x) over an interval [a,b] is defined as

$$\int_{a}^{b} f(x) dx = \lim_{\max{\{\Delta x_i\} \to 0}} \sum_{i=1}^{n} f(z_i) \Delta x_i$$

where $a=x_0 < x_1 < x_2 < \cdots < x_n = b$ and $\Delta x_i = x_i - x_{i-1}$, for each $i=1,2,\ldots,n$, and z_i is arbitrary chosen from $[x_{i-1},x_i]$.

Outline

- Introduction to Numerical Methods
 - Numerical Methods in Ancient Civilisations
 - Brief Applications of Various Topics in Numerical Methods
- Sources of Errors
- Truncation Error
 - Geometric Series
 - Taylor Series
- Round-off Error
 - Finite Precision Computer Arithmetic
 - Computer Number Systems
 - Loss of Significant Digits
- 6 Appendix
 - Review on Calculus
 - Decimal, binary and hexadecimal

Decimal, binary and hexadecimal

Decimal (Base 10):

- $4629 = 4 \times 10^3 + 6 \times 10^2 + 2 \times 10^1 + 9 \times 10^0$
- $31.72 = 3 \times 10^1 + 1 \times 10^0 + 7 \times 10^{-1} + 2 \times 10^{-2}$
- In general, $(a_n \dots a_0.b_1 \dots)_{10} = \sum_{k=0}^n a_n 10^k + \sum_{k=1}^\infty b_n 10^{-k}$

Binary (Base 2):

- $10011_2 = 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 1 \times 2^1 + 1 \times 2^0 = 19_{10}$
- $11.001_2 = 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-3} = 3.125_{10}$.

Hexadecimal (Base 16):

•
$$2F91_{16} = 2 \times 16^3 + 15 \times 16^2 + 9 \times 16^1 + 1 \times 16^0 = 12177_{10}$$

Decimal, binary and hexadecimal

In Matlab, the conversion on binary or hexa to decimal can be done by

```
Matlab
```

```
1 >> bin2dec('10011')
2 >> hex2dec('2F91')
3 >> bin2dec('11.001')
4 >> dec2bin(49)
5 >> dec2hex(49)
```

The line no. 3 will returns NaN. What does it means?

Conversion: Base-10 \rightarrow Base-2

Example

```
3781_{10} = 1110 \ 1100 \ 0101_2
2 ) 3781
2 ) 1890 \ 1
2 ) 945 \ 0
```

Example

```
3781.372_{10} = \dots
```

The previous examples tell us that "simple" number in Base-10 is not necessary "simple" in Base-2.

THE END

