Numerical Methods - Preliminaries

Y. K. Goh

Universiti Tunku Abdul Rahman

2013

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Table of Contents

@ Introduction to Numerical Methods
@ Numerical Methods in Ancient Civilisations
@ Brief Applications of Various Topics in Numerical Methods

© Sources of Errors

© Truncation Error
o Geometric Series
@ Taylor Series

© Round-off Error
@ Finite Precision Computer Arithmetic
o Computer Number Systems
@ Loss of Significant Digits

e Appendix
@ Review on Calculus
@ Decimal, binary and hexadecimal

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

@ Introduction to Numerical Methods
@ Numerical Methods in Ancient Civilisations
@ Brief Applications of Various Topics in Numerical Methods

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Introduction Numerical Methods

@ One of the earliest and most practical branches of mathematics.

e For ancient civilisations, the study of numerical methods, like trigonometry, is
extremely important in:

e constructions, carpentry, taxation, navigation, astronomy, calendar, ...
@ Modern applications:

Computational fluid mechanics
Rocket trajectories

Numerical Weather Prediction
Engineering

Chemical reactions

Betting in football tournament
Insurance premiums

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Outline

@ Introduction to Numerical Methods
@ Numerical Methods in Ancient Civilisations

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

ds in Ancient Civilisations

Example (A Babylonian Example)

@ Put away your calculator, and do this example with only pen and paper.

o Consider a metal of square shape, the lengths on 4 sides are 1 meter, you
need to fix a string along two ends of the diagonal, what is the length of
string accurate to mm?

@ The exact answer is /2.

However to prepare the string we need a numerical value.

Can you approximate the value of v/2 accurate to 3 decimals?

Key Concepts:

@ exact value, numerical value, approximation, accuracy

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Numerical Methods in Ancient Civilisations

Example (A Babylonian Example)

@ Babylonian clay tablet — YBC7289 (c. 1800 — 1600 BC). [Source: Wikipedial
@ The Babylonian recorded the value of v/2 in sexagesimal as 1;24, 51, 10.
@ In our modern language, the value of V2 in decimal is 1.4142. .., ie

24 51 _ 10
2~ ... =1.41421296. ...
V2 steEtem T 96

Key Concepts:

@ number systems: decimal, sexagesimal

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

ds in Ancient Civilisations

Example (How Babylonian calculate z = \/E)

o First algorithm used for approximating v/S

@ Recorded by the first century Greek mathematician Heron's of Alexandrian.
@ choose a number x(as an

initial guess for z. :g
@ improve the guess with a0
1 S 30
T1 =5 |To + = 20
. 10
@ similarly, we can further e
improve the approximation -10
by the iterative formula ~20
_1 S .
Tnt1 = 3 (x” + zn) for Figure: Convergence of Heron's
n=1,2,... . method to evaluate 4/100.

Key Concepts:

@ algorithm, initial value, iteration, convergence, fixed points

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Numerical Methods in Ancient Civilisations

Example (How Ancient Indian calculate

@ Recorded in Bakhshali manuscript (approximately 400 AD).

@ Algorithm:
o Let N? be the nearest perfect square to S.
("] d == Sd— N2
° P:ﬁ,andA:NJrP
P2
) \/E% A— —

2A
o For example, to evaluate /5.3, the nearest perfect square is N2 = 22 = 4.
@ Thus, d=1.3, P = 0.325, A = 2.325, and finally the approximation
V5.3 ~ 2.302285.
N*+6N2S + 52
4N3 +4NS

Key Concepts:
@ there are always alternative algorithms to solve the same problem.

o Alternatively, the algorithm can be written as V'S ~

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

@ Introduction to Numerical Methods

@ Brief Applications of Various Topics in Numerical Methods

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Brief Applications of Various Topics in Numerical Methods

Let breifly outline the topic in numerical methods that we will cover in this course:

Chapter 2 — Solving non-linear equation(s).
Chapter 3 — Solving system of linear equations.
Chapter 3 — Finding eigenvalues

Chapter 4 — Interpolations

Chapter 5 — Differentiations and integrations

Chapter 6 — Ordinary differential equation - initial-value problem

Chapter 7 — Ordinary differential equation - boundary-value problem
o Chapter 8 — Partial differential equation

In the next few slides, we will see some of the examples how these topics applied
in various situations.

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Matrix — Solving system of linear equations

Example (Electrical networks)
@ The following electrical network can be viewed as consisting of 3 loops.

o Applying Kirchoff's law, > voltage drops = > voltage sources to each loop,
we get:

220V 5i1 + 15(41 — ’ig) =220
R(iz — i3) + 519 + 1029 = 0
20i3 + R(is —i3) + 15(i3 —i1) =0

10Q

150

@ What are the value of the currents i1,45 and i3 if given R = 4.27

o Essentially the system of linear equations can be re-written as a matrix
equation and solving for the currents involve inverting a coefficient matrix.

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Curve fitting — Finding a function f(x) to describe data

Example (Fitting Data)
o Consider the observed data (left figure) for the vertical velocity of an UFO.

@ The data are recorded poorly, can we find a function v(t) that best fit the
velocity data on the UFO?

uuuuu

uuuuu

@ We can apply a numerical curve fitting algorithm to the data, and the
outcome is a function v(t) = 40 + 32t* — 0.013¢* + 0.00025¢* %3

@ The fitted function is plotted as a curve in the right figure.

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Root finding — Solving a non-linear equation f(z) =0

Example (Root finding)

@ We know the escape velocity for the Earth is 11200 m/s, find the time at
which the UFO reach the Earth escape velocity.

o Mathematically the problem is to find the interceptions for the curve v(t) and
straight line v = 11200 as in the figure.

@ equivalently, we want to find the value of ¢ where f(t) = 0, where
f(t) =v(t) — 11200 = 40 + 3222 — 0.013z* + 0.000252*683 — 11200.
@ From the bisection method, we found the times that the UFO will reach
esscape velocity are t = 20.14, or t = 55.90.

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Numerical Integration / Differentiation

Example (Root finding)
@ Now that we know how the UFO moves vertically, we can further estimate
the UFQ's height and acceleration.

o Integration of the vertical velocity gives the height.
o Differentiation of the vertical velocity gives the acceleration.

velocity 1000 acceleration

500

0
-500
-1000
-1500
~2000
-2500
-3000

30000

10 20 20 50

30
height

900000
800000
700000
600000
500000
400000
300000

200000
100000

0

~5000

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Numerical ODE - Initial Value Problem

Example (Solution of system of ODEs with different initial values)

@ In 1963, Edward Lorenz developed a simplified mathematical model for
atmospheric convection.

Lorenz attractor — (.10
(0, 1.001, 0)

z—f=0(y—w)
%ﬂc(p—Z)—y
dz

E—xy—,é’z

o The simulation on the right
uses: ¢ = 10, p = 28, and
B8 =8/3.

o Note that two close by starting
points ended up following very
different trajectories.

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Outline

© Sources of Errors

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Numerical methods in practice

@ From the previous slides, we know the aim of Numerical Methods is to find a
numerical approximation to the exact solution.
@ The approximation should be close enough to the exact solution.
o What is the acceptable tolerance for error?
e Often this tolerance is the stopping criteria for the numerical algorithms.
@ Since it is an approximated solution, there is always question that how far the
approximation from the exact answer:
o the is to ask: what is the error? (absolute error)
o related questions are: is the error “big"? (relative error)
e what are the possible sources of errors?
@ The numerical approximations are the outcomes.
@ In Numerical Methods, we are also interested how to get these outcomes:

o Can we systematically re-produce the outcomes? (algorithms)

o Are there any alternative algorithm that is faster or more accurate?

e Under what kind of conditions the algorithm will not work? (ill-posed
problems)

o Often the algorithm is iterative, will the iterations be stable? (converge

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Sources of Errors

Possible sources of errors:

@ Truncation errors

o ‘“Intrinsic” error in a method
e often occurs due to representing a series (infinite sum) with a finite sum — e.g.

as in Taylor's series.
@ Round-off errors

e Due to limitation of computing device.
o Computer arithmetic is finite, that is to say computer stores number using a

finite amount of memories.
o Round-off errors arised once an exact decimal number, like 3.28, is stored as a

finite memory floating point number.
e Data uncertainty (not considered)
@ Inappropriate model (not considered)
We will discuss truncation errors and round-off errors in more details.

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Outline

© Truncation Error
o Geometric Series
@ Taylor Series

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Outline

© Truncation Error
@ Geometric Series

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Geometric Series

@ To get a feel on what is truncation error, let consider the formula for

geometric series:

a o0
_ n
LS
n=0
4 o0
@ Consider the case where a =1 and r = %, we have 3 = 24_".
n=0
@ Here, the RHS is a sum up to infinite many terms of 4= to give the exact
value of the LHS, ie %.
@ However, it is unlikely that a human or a computer can sum up to infinite
many terms, we have to stop somewhere.
@ Let say we stop after 10 terms, then we have the approximation for % which
is 22:0 4" = 1.3333320617675781

@ Stopping after 10 steps broke the equal sign and the resulting error is called
the truncation error. In this case the truncation error is . 47",

Numerical Methods - Preliminaries

Outline

© Truncation Error

@ Taylor Series

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Approximation by Taylor's series

Let say we would like to calculate cos(0.1), but do not have a scientific calculator
or lookup table.

e We know cos(0) = 1.
@ We know all the derivatives of cos at 0.

@ Taylor series for cos is

_ - (_1)n 2n
COS.’IJ—Z (2n)'(E

n=0

Thus, we can “calculate” cos(0.1) from its Taylor's series.

Reality: we cannot calculate exactly cos(0.1), as we are not be able to
tabulate all the infinite sum of Taylor's series, but we can approximate it with
a Taylor's polynomial.

The series is truncated after a certain term.

We can generalise the example for geometric series to Taylor series.

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Approximation by Taylor's series

o First approximation, cos(0.1) =~ 1

@ Subsequent approximation:

cos(0.1) ~ 1—(0.1)2/2! = 0.9950

cos(0.1) ~ 1—(0.1)%/2!+ (0.1)*/4!
= 0.99500416666667

cos(0.1) ~ 1—(0.1)2/2! 4 (0.1)*/4! — (0.1)°/6!
= 0.99500416527778

@ Numerical approximation correct to 14 d.s.p cos(0.1) = 0.99500416527803.

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Approximation by Taylor's series

[
o

[

=
)

function value
o

Figure: Taylor's series approximation of cos(z)

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Taylor Polynomial and Series

Theorem (Taylor's Theorem)

Suppose f € C™[a,b] and f"+1) exists on [a,b]. Let 2 € [a,b]. For every
x € [a,b], there exists a number &(x) between xo and x such that

f(z) = Po(z) + Rn(x)

where
nooek
n-th Taylor Polynomial, P,(z) = Z /]ia!co) (z — x0)¥,
k=0
: _ fE@) n+1
Remainder, R, (z) = W(w)

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Key Numerical Methods questions

Some of the key questions in numerical analysis:
@ What is the estimated value and its estimated error?
o What is the maximum error? (bounds of remainder)
@ Let the acceptable error be ¢,, how many approximation steps | need to do?

@ In what situation the method will not work? (radius of convergence)

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Exercise

Let consider the Taylor's series approximation for In(0.9).

o Write down the Taylor's polynomial of order n, P,(x) and its remainder
R, (z) for In(1 + z).

o Approximate In(0.9) by Ps(x). What is the absolute error?
o What is the maximum error if it is approximated by P, (z).

@ How many terms need to be included, i.e. what is n, in order for the Taylor's
polynomial to have error less than an acceptable tolerance of ¢ = 10787

@ Can we use the Taylor's polynomial to approximate In(1.8)? Why?

@ How about to approximate In(2.4)? Why?

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

© Round-off Error
@ Finite Precision Computer Arithmetic
o Computer Number Systems
@ Loss of Significant Digits

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Outline

© Round-off Error
@ Finite Precision Computer Arithmetic

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Finite Precision Computer Arithmetic

@ Often we use a computer to implement our numerical algorithms.

@ We must aware that computer is a finite precision arithmetic machine.

@ That is to say, computer uses limited memory to store numbers, and cannot
distinguish numbers that is smaller than a fixed value (machine epsilon) from
zero.

@ Another word, we cannot hope to use a computer to calculate a numerical
approximation correct to the number of digits that beyond the resolution of
machine epsilon.

@ For example, the machine epsilon of a 64-bit floating-point is ~ 2 x 10716,
thus it is not possible (usually) to compute a numerical approximation
accurate to 17 decimal places.

@ As a result, some real numbers like 1/3 = 0.333333... will not be
represented by computer exactly, but to the best possible within the allocated
memory.

@ The resulting error is called the round-off error, and the number stored in th
finite allocated memory of computer is called the floating-point numbe

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Finite Precision Computer Arithmetic

@ The python code below demonstrates that the computer arithmetic is finite:

eps = 1.0

while 1.0 - eps < 1.0:
print "eps = ", eps
eps = eps/10.

print "Escaped!"

@ The output looks as follow:

eps = 1.0
eps = 0.1
eps = 0.01
eps = le-15
eps = le-16

Escaped!

Numerical Methods - Preliminaries

Outline

© Round-off Error

o Computer Number Systems

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Computer Number System

Some of the basic “Numbers” in computer:
@ Booleans (true or false)
Integers (unsigned and signed)

Floating-points (single, double)

Complex floating-points (a + jb)

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Computer Integers

There are several schemes to represent numbers in computer. All the schemes are
in Base-2.

Example (unsigned 8-bit integers)

@ uint8 or uchar numbers are positive integers that stored in 8-bit memory. It
can only takes 28 = 256 different values.

@ Smallest value of uint8: 0000 0000, = 0.
o Largest value of uint8: 1111 11115 = 255 =1 — 28,

Example (signed 8-bit integers)

@ int8 or char numbers are uint8 integers that biased/shifted by
shift = —27.

@ Smallest value of int8: 0000 00002 + shift =0 — 128 = —128.
o Largest value of int8: 1111 11115 + shift = 127.

Y. K. Goh (UTAR)

Numerical Methods - Preliminaries

Computer Integers

Example (32-bit integers)

@ int32 are integers that stored in 32-bit memory and baised/shifted by —23!.
It can takes 232 = 4294967296 different values.

o Smallest value of int32: 0 — 23! = —2147483648.
o Largest value of int32: (232 — 1) — 231 = 2147483647.

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Floating-Points

@ Real numbers are represented as finite memory floating-point numbers.
Usually 32-bit (single precission) or 64-bit (double precission)
@ A commonly used floating-point standard is the IEEE 754 standard.

@ Any real number may be expressed as r = sign x m x 2¢, where
m = (0.b1babs ...)2 is called the mantissa and e is the exponent.

@ The floating point representation of the real number r is denoted as fI(r),
where usually m and e are stored in finite bits of memory.

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

IEEE 754 Single-precision

@ A floating-point format uses 32-bit memory.

sign exponent (8-bit) fraction (23-bit)

I T |
EEREEEREEEEEEEEEEEEEEEEEEEEEEEEE RS
(o] [s] (o]

31 23 0

(=1)* x 27127 x (1.f) normalised, 1 < e < 254,
(—=1)* x 2°7126 x (0.f) denormalised, e = 0, f > 0,

o fl(r)= 0 e=0,f=0,
(=1)°Inf, e =255, =0,
NaN, e=255f>0.

e s - 1-bit sign bit

e e - 8-bit biased exponent

e m - 23-bit fraction

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

IEEE 754: Example

What is the value of the IEEE single-precision floating point number represented
by the following binaries?

e 00111110 00100000 00000000 00000000 [Ans.: 0.15625]
@ 11111111 11111111 1111111 11111111 [Ans.: NaN]

| A

Example
@ Show that 1313.3125;¢ is 10100100001.0101 in base-2.
@ Put the base-2 value into a normalized form.

@ Write down the IEEE 754 single-precision representation for 1313.31254¢.
[Ans.: 1/10001001|01001000010101000000000]

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

IEEE 754 Double-precision

@ A double floating-point uses 64-bit memory.

exponent fraction
sign (11 bit) (52 bit)
|
L e
° ° °
63 52 0
(—1)* x 2¢7102 5 (1.f) normalised, 1 < e < 2046,
(—1)° x 2¢71922 % (0.f) denormalised, e = 0, f > 0,
o fllr)=¢ 0 e=0,f=0,
(=1)°Inf, e=2047,f =0,
NaN, e=2047,f > 0.

e s - 1-bit sign bit
o e - 11-bit biased exponent
e m - 52-bit fraction

Y. K. Goh (UTAR) Numerical Methods - Preliminaries 2013 41 / 58

and Precision

Type Exp. Low Limit | High Limit Fraction Precision Significant
bias digits

Single 127 27126 ~ [2128 ~ 1038 | 23 2721~ |7

(32/23 fp) 1038 1077

Double 1023 | 271022 [21024 ~ | 52 27°3 ~ |16

(64/52 fp) 10308 10308 1016

Y. K. Goh (UTAR)

Numerical Methods - Preliminaries

Machine Espilon and Precision

@ Range - gives the limits of the values could be represented by a floating-point
format. That is the numbers covered by Low Limit and High Limit in the
previous slide.

@ Machine Epsilon, ¢ = 2723 (32/23 fp) or 27°2 (64/52 fp) is the smallest
positive machine number such that 14+ € # 1. Try this: eps = 2.0%*(-52)
1 + eps (This give you 1.0000000000000002) 1 + eps/2 (This give you
1.0)
@ Errors that can happen when assigning a real number x to a variable in a
program:
o Overflow: example: z = 2'92° this will maps to the machine number INF.
e Underflow: example: = = 271920 this will maps to the machine number 0.0.
o Roundoff error: This happen when the real number cannot be represented
exactly in Base-2, and will be replaced by the nearest machine number.

@ In additions, errors or rather unexpected results will happens after certain
arithmetic operations. We call this Loss of significant digits.

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Roundoff Error

Let fi(x) be the floating-point representation of a real number z = 1/3 on a
16-bit register with 1 sign bit, 5 exponent bits with 15 bias, and 10 mantissa bits.

@ What is the the machine epsilon?

o What is bit representation of fi(z)? [ANS:
fl(z) = 0]011010101010101 = 0.3332519531]

@ What is the roundoff error?

@ Whenever representing a real number z to a floating-point format fi(x), the
conversion suffer from round-off error.
@ Let say 2¢ < x < 2°t! and the number of bits in fraction field is n, then z
will be rounded to its nearest floating-point, which is either
o (—1)° X (L.araz...an)2 X 2°, or
o (—1)® x [(Laraz...an)2 + 5] X 2%, or
e This gives the rounding error, €5 = |z — fl(z)| < 52°7™.
@ i.e. the relative error, S S
=S _ 2 o3

— 277171-

|| (Larag ...an)a x 26 = 2¢

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

© Round-off Error

@ Loss of Significant Digits

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Loss of Significant Digits — addition

Example

Most computer performing arithmetic operations from left to right, ie. whenever
a+ b+ cit means (a+ b) + c. Consider addition in a single precision (roughly 7
significant digits) and single register system

e Calculating 10,000,000+ 1.+ 1.4+ 1. , will get 10,000, 000.
—_———
10 million times
@ Because 0.1000000 x 10® + 0.1000000 x 10! gives 0.10000000 x 108.
@ On the other hand, 1.+ 1.+ 1. +10,000,000 = 20,000,000 gives the
—_———

10 million times
expected answer.

Add numbers in size order to avoid LSD in addition.

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Loss of Significant Digits — substraction

Example

o Let's calculate z — sinz for = 1/15.

z = 0.66666 66667 x 10~
sinz = 0.66617 29492 x 107!
r—sinz = 0.00049 37175 x 107!

0.49371 75000 x 10~*

@ 3 significant digits from the right are lost.

@ Use Taylor's series for z — sinz ~ 2% /3! — 2° /5! + 27/7! instead, which gives
0.49371 74328 x 1074, and the actual value is 0.49371 74327 x 10~%.

v

Substractions of close numbers cause LSD. ‘

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Outline

e Appendix
@ Review on Calculus
@ Decimal, binary and hexadecimal

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Outline

e Appendix
@ Review on Calculus

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Review on Calculus

Definition (Limit)
A function f(x) is said to have a limit L at a if given any number € > 0, we can
find an 6 > 0 such that |f(z) — L| < € whenever 0 < |z — a| < §. We write

liin f(x)=L.

Definition (Continuity)

f(z) is said to be continuous at a if
° igrb f(z) exists
o f(a) is defined
o lim /() = f(a).

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Review on Calculus

Definition (Differentiability)

f(z) is differentiable at a if

i {@) = f(@)

z—a r—a

= f'(a)

exists. f’(a) is called the derivative of f(z) at z = a.

A function f(x) that is differentiable at a is also f(x) continuous at a.

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Review on Calculus

Theorem (Rolle Theorem)

Suppose f € Cla,b], differentiable on (a,b), and if f(a) = f(b), then there exists
a number c € (a,b) such that f'(c) = 0.

Theorem (Mean Value Theorem)

If f(z) € C[a,b] and differentiable on (a,b), then there exists a number c € (a,b)
such that

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Review on Calculus

Definition (Riemann Integral)

The Reimann integral of a function f(x) over an interval [a,] is defined as

b n
/ f(z)dx = lim Z f(zi)Ax;

max{Az; }—0 Pl

where a =g < 21 < 29 < --- < x, = b and Ax; = x; — x;_1, for each
i=1,2,...,n, and z; is arbitrary chosen from [z;_1,z;].

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Outline

e Appendix

@ Decimal, binary and hexadecimal

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Decimal, binary and hexadecimal

Decimal (Base 10):
0 4629 =4 x 103 +6 x 102 4+ 2 x 10' +9 x 109
031.72=3x10'+1x1094+7x 1071 +2 x 1072

@ In general, (ay,...ap.by...)10 = z:anl()lC + Z b, 107"
k=0 k=1

Binary (Base 2):
0 100115 =1 x 22 +0x 23 +0x 221 x 21 +1 x 20 =19,
@ 11.0015 =1 x 2 +1x204+1 x 273 = 3.125,.
Hexadecimal (Base 16):
@ 2F9116 =2 x 163 + 15 x 162 4+ 9 x 16" + 1 x 16° = 1217719

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Decimal, binary and hexadecimal

In Matlab, the conversion on binary or hexa to decimal can be done by

1 >> bin2dec('10011")
2 >> hex2dec('2F91")

3 >> bin2dec(’'11.001")
4 >> dec2bin (49)

5 >> dec2hex (49)

The line no. 3 will returns NaN. What does it means?

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

Conversion: Base-10 — Base-2

378119 = 1110 1100 0101,
2) 3781

2) 1890 1

2) 9450

3781.37219 = ...

The previous examples tell us that “simple” number in Base-10 is not necessary
“simple” in Base-2.

Y. K. Goh (UTAR) Numerical Methods - Preliminaries

THE END

Goh (UTAR) Numerical Methods - Preliminaries

	Contents
	Introduction to Numerical Methods
	Numerical Methods in Ancient Civilisations
	Brief Applications of Various Topics in Numerical Methods

	Sources of Errors
	Truncation Error
	Geometric Series
	Taylor Series

	Round-off Error
	Finite Precision Computer Arithmetic
	Computer Number Systems
	Loss of Significant Digits

	Appendix
	Review on Calculus
	Decimal, binary and hexadecimal

