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Introduction to Numerical Methods

One of the earliest and most practical branches of mathematics.

For ancient civilisations, the study of numerical methods, like trigonometry, is
extremely important in:

constructions, carpentry, taxation, navigation, astronomy, calendar, . . .

Modern applications:

Computational fluid mechanics
Rocket trajectories
Numerical Weather Prediction
Engineering
Chemical reactions
Betting in football tournament
Insurance premiums
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Numerical Methods in Ancient Civilisations

Example (A Babylonian Example)

Put away your calculator, and do this example with only pen and paper.

Consider a metal of square shape, the lengths on 4 sides are 1 meter, you
need to fix a string along two ends of the diagonal, what is the length of
string accurate to mm?

The exact answer is
√

2.

However to prepare the string we need a numerical value.

Can you approximate the value of
√

2 accurate to 3 decimals?

Key Concepts:

exact value, numerical value, approximation, accuracy
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Numerical Methods in Ancient Civilisations

Example (A Babylonian Example)

Babylonian clay tablet – YBC7289 (c. 1800 – 1600 BC). [Source: Wikipedia]

The Babylonian recorded the value of
√

2 in sexagesimal as 1; 24, 51, 10.

In our modern language, the value of
√

2 in decimal is 1.4142 . . . , ie
√

2 ≈ 1 +
24

60
+

51

602
+

10

603
+ · · · = 1.41421296 . . . .

Key Concepts:

number systems: decimal, sexagesimal
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Numerical Methods in Ancient Civilisations

Example (How Babylonian calculate x =
√
S)

First algorithm used for approximating
√
S

Recorded by the first century Greek mathematician Heron’s of Alexandrian.
choose a number x0 as an
initial guess for x.

improve the guess with

x1 = 1
2

(
x0 + S

x0

)
similarly, we can further
improve the approximation
by the iterative formula

xn+1 = 1
2

(
xn + S

xn

)
for

n = 1, 2, . . . .
Figure: Convergence of Heron’s
method to evaluate

√
100.

Key Concepts:

algorithm, initial value, iteration, convergence, fixed points

Y. K. Goh (UTAR) Numerical Methods - Preliminaries 2013 8 / 58



Numerical Methods in Ancient Civilisations

Example (How Ancient Indian calculate x =
√
S)

Recorded in Bakhshali manuscript (approximately 400 AD).

Algorithm:

Let N2 be the nearest perfect square to S.
d = S −N2

P =
d

2N
, and A = N + P

√
S ≈ A− P 2

2A

For example, to evaluate
√

5.3, the nearest perfect square is N2 = 22 = 4.

Thus, d = 1.3, P = 0.325, A = 2.325, and finally the approximation√
5.3 ≈ 2.302285.

Alternatively, the algorithm can be written as
√
S ≈ N4 + 6N2S + S2

4N3 + 4NS
.

Key Concepts:

there are always alternative algorithms to solve the same problem.
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Brief Applications of Various Topics in Numerical Methods

Let breifly outline the topic in numerical methods that we will cover in this course:

Chapter 2 – Solving non-linear equation(s).

Chapter 3 – Solving system of linear equations.

Chapter 3 – Finding eigenvalues

Chapter 4 – Interpolations

Chapter 5 – Differentiations and integrations

Chapter 6 – Ordinary differential equation - initial-value problem

Chapter 7 – Ordinary differential equation - boundary-value problem

Chapter 8 – Partial differential equation

In the next few slides, we will see some of the examples how these topics applied
in various situations.
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Matrix – Solving system of linear equations

Example (Electrical networks)

The following electrical network can be viewed as consisting of 3 loops.

Applying Kirchoff’s law,
∑

voltage drops =
∑

voltage sources to each loop,
we get:

5i1 + 15(i1 − i3) = 220

R(i2 − i3) + 5i2 + 10i2 = 0

20i3 +R(i3 − i3) + 15(i3 − i1) = 0

What are the value of the currents i1, i2 and i3 if given R = 4.2?

Essentially the system of linear equations can be re-written as a matrix
equation and solving for the currents involve inverting a coefficient matrix.
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Curve fitting – Finding a function f(x) to describe data

Example (Fitting Data)

Consider the observed data (left figure) for the vertical velocity of an UFO.

The data are recorded poorly, can we find a function v(t) that best fit the
velocity data on the UFO?

We can apply a numerical curve fitting algorithm to the data, and the
outcome is a function v(t) = 40 + 32t2 − 0.013t4 + 0.00025t4.683.

The fitted function is plotted as a curve in the right figure.
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Root finding – Solving a non-linear equation f(x) = 0

Example (Root finding)

We know the escape velocity for the Earth is 11200 m/s, find the time at
which the UFO reach the Earth escape velocity.

Mathematically the problem is to find the interceptions for the curve v(t) and
straight line v = 11200 as in the figure.

equivalently, we want to find the value of t where f(t) = 0, where
f(t) = v(t)− 11200 = 40 + 32x2 − 0.013x4 + 0.00025x4.683 − 11200.

From the bisection method, we found the times that the UFO will reach
esscape velocity are t = 20.14, or t = 55.90.
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Numerical Integration / Differentiation

Example (Root finding)

Now that we know how the UFO moves vertically, we can further estimate
the UFO’s height and acceleration.

Integration of the vertical velocity gives the height.
Differentiation of the vertical velocity gives the acceleration.
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Numerical ODE - Initial Value Problem

Example (Solution of system of ODEs with different initial values)

In 1963, Edward Lorenz developed a simplified mathematical model for
atmospheric convection.

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

The simulation on the right
uses: σ = 10, ρ = 28, and
β = 8/3.

Note that two close by starting
points ended up following very
different trajectories.
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Numerical methods in practice

From the previous slides, we know the aim of Numerical Methods is to find a
numerical approximation to the exact solution.

The approximation should be close enough to the exact solution.

What is the acceptable tolerance for error?
Often this tolerance is the stopping criteria for the numerical algorithms.

Since it is an approximated solution, there is always question that how far the
approximation from the exact answer:

the is to ask: what is the error? (absolute error)
related questions are: is the error “big”? (relative error)
what are the possible sources of errors?

The numerical approximations are the outcomes.

In Numerical Methods, we are also interested how to get these outcomes:

Can we systematically re-produce the outcomes? (algorithms)
Are there any alternative algorithm that is faster or more accurate?
Under what kind of conditions the algorithm will not work? (ill-posed
problems)
Often the algorithm is iterative, will the iterations be stable? (convergence)
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Sources of Errors

Possible sources of errors:

Truncation errors

“Intrinsic” error in a method
often occurs due to representing a series (infinite sum) with a finite sum – e.g.
as in Taylor’s series.

Round-off errors

Due to limitation of computing device.
Computer arithmetic is finite, that is to say computer stores number using a
finite amount of memories.
Round-off errors arised once an exact decimal number, like 3.28, is stored as a
finite memory floating point number.

Data uncertainty (not considered)

Inappropriate model (not considered)

We will discuss truncation errors and round-off errors in more details.
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Geometric Series

Example

To get a feel on what is truncation error, let consider the formula for
geometric series:

a

1− r
=

∞∑
n=0

arn.

Consider the case where a = 1 and r = 1
4 , we have

4

3
=

∞∑
n=0

4−n.

Here, the RHS is a sum up to infinite many terms of 4−n to give the exact
value of the LHS, ie 4

3 .

However, it is unlikely that a human or a computer can sum up to infinite
many terms, we have to stop somewhere.

Let say we stop after 10 terms, then we have the approximation for 4
3 which

is
∑9

n=0 4−n = 1.3333320617675781 . . . .

Stopping after 10 steps broke the equal sign and the resulting error is called
the truncation error. In this case the truncation error is

∑∞
n=10 4−n.
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Approximation by Taylor’s series

Let say we would like to calculate cos(0.1), but do not have a scientific calculator
or lookup table.

We know cos(0) = 1.

We know all the derivatives of cos at 0.

Taylor series for cos is

cosx =

∞∑
n=0

(−1)n

(2n)!
x2n

Thus, we can “calculate” cos(0.1) from its Taylor’s series.

Reality: we cannot calculate exactly cos(0.1), as we are not be able to
tabulate all the infinite sum of Taylor’s series, but we can approximate it with
a Taylor’s polynomial.

The series is truncated after a certain term.

We can generalise the example for geometric series to Taylor series.
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Approximation by Taylor’s series

Example

First approximation, cos(0.1) ≈ 1

Subsequent approximation:

cos(0.1) ≈ 1− (0.1)2/2! = 0.9950

cos(0.1) ≈ 1− (0.1)2/2! + (0.1)4/4!

= 0.99500416666667

cos(0.1) ≈ 1− (0.1)2/2! + (0.1)4/4!− (0.1)6/6!

= 0.99500416527778
...

Numerical approximation correct to 14 d.s.p cos(0.1) = 0.99500416527803.
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Approximation by Taylor’s series

Figure: Taylor’s series approximation of cos(x)
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Taylor Polynomial and Series

Theorem (Taylor’s Theorem)

Suppose f ∈ Cn[a, b] and f (n+1) exists on [a, b]. Let x0 ∈ [a, b]. For every
x ∈ [a, b], there exists a number ξ(x) between x0 and x such that

f(x) = Pn(x) +Rn(x)

where

n-th Taylor Polynomial, Pn(x) =

n∑
k=0

fk(x0)

k!
(x− x0)k,

Remainder, Rn(x) =
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)n+1.
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Key Numerical Methods questions

Some of the key questions in numerical analysis:

What is the estimated value and its estimated error?

What is the maximum error? (bounds of remainder)

Let the acceptable error be εa, how many approximation steps I need to do?

In what situation the method will not work? (radius of convergence)
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Exercise

Example

Let consider the Taylor’s series approximation for ln(0.9).

Write down the Taylor’s polynomial of order n, Pn(x) and its remainder
Rn(x) for ln(1 + x).

Approximate ln(0.9) by P5(x). What is the absolute error?

What is the maximum error if it is approximated by Pn(x).

How many terms need to be included, i.e. what is n, in order for the Taylor’s
polynomial to have error less than an acceptable tolerance of ε = 10−8?

Can we use the Taylor’s polynomial to approximate ln(1.8)? Why?

How about to approximate ln(2.4)? Why?
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Finite Precision Computer Arithmetic

Often we use a computer to implement our numerical algorithms.

We must aware that computer is a finite precision arithmetic machine.

That is to say, computer uses limited memory to store numbers, and cannot
distinguish numbers that is smaller than a fixed value (machine epsilon) from
zero.

Another word, we cannot hope to use a computer to calculate a numerical
approximation correct to the number of digits that beyond the resolution of
machine epsilon.

For example, the machine epsilon of a 64-bit floating-point is ≈ 2× 10−16,
thus it is not possible (usually) to compute a numerical approximation
accurate to 17 decimal places.

As a result, some real numbers like 1/3 = 0.333333 . . . will not be
represented by computer exactly, but to the best possible within the allocated
memory.

The resulting error is called the round-off error, and the number stored in the
finite allocated memory of computer is called the floating-point number.
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Finite Precision Computer Arithmetic

Example

The python code below demonstrates that the computer arithmetic is finite:
eps = 1.0

while 1.0 - eps < 1.0:

print "eps = ", eps

eps = eps/10.

print "Escaped!"

The output looks as follow:
eps = 1.0

eps = 0.1

eps = 0.01

. . .
eps = 1e-15

eps = 1e-16

Escaped!
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Computer Number System

Some of the basic “Numbers” in computer:

Booleans (true or false)

Integers (unsigned and signed)

Floating-points (single, double)

Complex floating-points (a + jb)
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Computer Integers

There are several schemes to represent numbers in computer. All the schemes are
in Base-2.

Example (unsigned 8-bit integers)

uint8 or uchar numbers are positive integers that stored in 8-bit memory. It
can only takes 28 = 256 different values.

Smallest value of uint8: 0000 00002 = 0.

Largest value of uint8: 1111 11112 = 255 = 1− 28.

Example (signed 8-bit integers)

int8 or char numbers are uint8 integers that biased/shifted by
shift = −27.

Smallest value of int8: 0000 00002 + shift = 0− 128 = −128.

Largest value of int8: 1111 11112 + shift = 127.
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Computer Integers

Example (32-bit integers)

int32 are integers that stored in 32-bit memory and baised/shifted by −231.
It can takes 232 = 4294967296 different values.

Smallest value of int32: 0− 231 = −2147483648.

Largest value of int32: (232 − 1)− 231 = 2147483647.
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Floating-Points

Real numbers are represented as finite memory floating-point numbers.
Usually 32-bit (single precission) or 64-bit (double precission)

A commonly used floating-point standard is the IEEE 754 standard.

Any real number may be expressed as r = sign×m× 2e, where
m = (0.b1b2b3 . . . )2 is called the mantissa and e is the exponent.

The floating point representation of the real number r is denoted as fl(r),
where usually m and e are stored in finite bits of memory.
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IEEE 754 Single-precision

A floating-point format uses 32-bit memory.

fl(r) =


(−1)s × 2e−127 × (1.f) normalised, 1 ≤ e ≤ 254,
(−1)s × 2e−126 × (0.f) denormalised, e = 0, f > 0,
0 e = 0, f = 0,
(−1)sInf, e = 255, f = 0,
NaN, e = 255, f > 0.

s - 1-bit sign bit
e - 8-bit biased exponent
m - 23-bit fraction
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IEEE 754: Example

Example

What is the value of the IEEE single-precision floating point number represented
by the following binaries?

00111110 00100000 00000000 00000000 [Ans.: 0.15625]

11111111 11111111 1111111 11111111 [Ans.: NaN ]

Example

Show that 1313.312510 is 10100100001.0101 in base-2.

Put the base-2 value into a normalized form.

Write down the IEEE 754 single-precision representation for 1313.312510.
[Ans.: 1|10001001|01001000010101000000000]
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IEEE 754 Double-precision

A double floating-point uses 64-bit memory.

fl(r) =


(−1)s × 2e−1023 × (1.f) normalised, 1 ≤ e ≤ 2046,
(−1)s × 2e−1022 × (0.f) denormalised, e = 0, f > 0,
0 e = 0, f = 0,
(−1)sInf, e = 2047, f = 0,
NaN, e = 2047, f > 0.

s - 1-bit sign bit
e - 11-bit biased exponent
m - 52-bit fraction
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Summary of Range and Precision

Type Exp.
bias

Low Limit High Limit Fraction Precision Significant
digits

Single
(32/23 fp)

127 2−126 ≈
10−38

2128 ≈ 1038 23 2−24 ≈
10−7

7

Double
(64/52 fp)

1023 2−1022 ≈
10−308

21024 ≈
10308

52 2−53 ≈
10−16

16
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Machine Espilon and Precision

Range - gives the limits of the values could be represented by a floating-point
format. That is the numbers covered by Low Limit and High Limit in the
previous slide.

Machine Epsilon, ε = 2−23 (32/23 fp) or 2−52 (64/52 fp) is the smallest
positive machine number such that 1 + ε 6= 1. Try this: eps = 2.0**(-52)

1 + eps (This give you 1.0000000000000002) 1 + eps/2 (This give you
1.0)

Errors that can happen when assigning a real number x to a variable in a
program:

Overflow: example: x = 21920, this will maps to the machine number INF.
Underflow: example: x = 2−1920, this will maps to the machine number 0.0.
Roundoff error: This happen when the real number cannot be represented
exactly in Base-2, and will be replaced by the nearest machine number.

In additions, errors or rather unexpected results will happens after certain
arithmetic operations. We call this Loss of significant digits.
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Roundoff Error

Example

Let fl(x) be the floating-point representation of a real number x = 1/3 on a
16-bit register with 1 sign bit, 5 exponent bits with 15 bias, and 10 mantissa bits.

What is the the machine epsilon?

What is bit representation of fl(x)? [ANS:
fl(x) = 0|01101|0101010101 = 0.3332519531]

What is the roundoff error?

Whenever representing a real number x to a floating-point format fl(x), the
conversion suffer from round-off error.
Let say 2e ≤ x ≤ 2e+1 and the number of bits in fraction field is n, then x
will be rounded to its nearest floating-point, which is either

(−1)s × (1.a1a2 . . . an)2 × 2e, or
(−1)s × [(1.a1a2 . . . an)2 +

1
2n

]× 2e, or

This gives the rounding error, εfl = |x− fl(x)| ≤ 1
22e−n.

i.e. the relative error,

ε =
|x− fl(x)|
|x|

≤
1
22e−n

(1.a1a2 . . . an)2 × 2e
≤

1
22e−n

2e
= 2−n−1.
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Loss of Significant Digits – addition

Example

Most computer performing arithmetic operations from left to right, ie. whenever
a+ b+ c it means (a+ b) + c. Consider addition in a single precision (roughly 7
significant digits) and single register system

Calculating 10, 000, 000 + 1.+ 1.+ 1.︸ ︷︷ ︸
10 million times

, will get 10, 000, 000.

Because 0.1000000× 108 + 0.1000000× 101 gives 0.10000000× 108.

On the other hand, 1.+ 1.+ 1.︸ ︷︷ ︸
10 million times

+10, 000, 000 = 20, 000, 000 gives the

expected answer.

Add numbers in size order to avoid LSD in addition.
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Loss of Significant Digits – substraction

Example

Let’s calculate x− sinx for x = 1/15.

x = 0.66666 66667× 10−1

sinx = 0.66617 29492× 10−1

x− sinx = 0.00049 37175× 10−1

= 0.49371 75000× 10−4

3 significant digits from the right are lost.

Use Taylor’s series for x− sinx ≈ x3/3!− x5/5! + x7/7! instead, which gives
0.49371 74328× 10−4, and the actual value is 0.49371 74327× 10−4.

Substractions of close numbers cause LSD.
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Review on Calculus

Definition (Limit)

A function f(x) is said to have a limit L at a if given any number ε > 0, we can
find an δ > 0 such that |f(x)− L| < ε whenever 0 < |x− a| < δ. We write
lim
x→a

f(x) = L.

Definition (Continuity)

f(x) is said to be continuous at a if

lim
x→a

f(x) exists

f(a) is defined

lim
x→a

f(x) = f(a).
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Review on Calculus

Definition (Differentiability)

f(x) is differentiable at a if

lim
x→a

f(x)− f(a)

x− a
= f ′(a)

exists. f ′(a) is called the derivative of f(x) at x = a.

Theorem

A function f(x) that is differentiable at a is also f(x) continuous at a.
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Review on Calculus

Theorem (Rolle Theorem)

Suppose f ∈ C[a, b], differentiable on (a, b), and if f(a) = f(b), then there exists
a number c ∈ (a, b) such that f ′(c) = 0.

Theorem (Mean Value Theorem)

If f(x) ∈ C[a, b] and differentiable on (a, b), then there exists a number c ∈ (a, b)
such that

f ′(c) =
f(b)− f(a)

b− a
.
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Review on Calculus

Definition (Riemann Integral)

The Reimann integral of a function f(x) over an interval [a, b] is defined as∫ b

a

f(x) dx = lim
max{∆xi}→0

n∑
i=1

f(zi)∆xi

where a = x0 < x1 < x2 < · · · < xn = b and ∆xi = xi − xi−1, for each
i = 1, 2, . . . , n, and zi is arbitrary chosen from [xi−1, xi].
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Decimal, binary and hexadecimal

Decimal (Base 10):

4629 = 4× 103 + 6× 102 + 2× 101 + 9× 100

31.72 = 3× 101 + 1× 100 + 7× 10−1 + 2× 10−2

In general, (an . . . a0.b1 . . . )10 =

n∑
k=0

an10k +

∞∑
k=1

bn10−k

Binary (Base 2):

100112 = 1× 24 + 0× 23 + 0× 221× 21 + 1× 20 = 1910

11.0012 = 1× 21 + 1× 20 + 1× 2−3 = 3.12510.

Hexadecimal (Base 16):

2F9116 = 2× 163 + 15× 162 + 9× 161 + 1× 160 = 1217710
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Decimal, binary and hexadecimal

In Matlab, the conversion on binary or hexa to decimal can be done by

Matlab

1 >> bin2dec ( ’ 10011 ’ )
2 >> hex2dec ( ’ 2F91 ’ )
3 >> bin2dec ( ’ 11 .001 ’ )
4 >> dec2b in ( 4 9 )
5 >> dec2hex ( 4 9 )

The line no. 3 will returns NaN. What does it means?
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Conversion: Base-10 → Base-2

Example

378110 = 1110 1100 01012

2
)

3781

2
)

1890 1

2
)

945 0
...

Example

3781.37210 = . . .

The previous examples tell us that “simple” number in Base-10 is not necessary
“simple” in Base-2.
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THE END
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