
UECM3033 Numerical Methods

Tutorial: Solutions of Equations

(Jan 2013)

- 1. Show that the equation $x^3 + 2x 6 = 0$ has a root in (1,2). Use bisection method to approximate the root accurate up to 2 significant digits.
- 2. Let c be a constant and $g(x) = x + c(x^3 2)$. Consider the iteration $x_{n+1} = g(x_n)$.
 - a) Find the limit of the iteration if it converges at all.
 - b) Determine a value of c so that the iteration converges.
- 3. Keplers equation $x=m+E\sin(x)$ where m and E are constants, plays an important role in astronomy. Let $m=0.8, E=0.2, x_0=m$.
 - a) Show that it may be solved by using direct iteration $x_{n+1} = m + E\sin(x)$. Find the first three iterations.
 - b) Find also the fist three approximations by using Newtons Method.
- 4. A trough of length L has a cross section in the shape of a semicircle with radius r. (See figure.) When filled with water to within a distance h from the top, the volume V of water is $V=L[0.5\pi r^2-r^2\sin^{-1}(h/r)-h\sqrt{r^2-h^2}]$. Suppose $L=10\mathrm{cm}, r=1\mathrm{cm}$ and $V=12.4\mathrm{cm}^3$. Find the depth of water in the trough to within $0.01\mathrm{cm}$

- 5. The *reciprocal* of a number R can be computed without division by the iterative formula $x_{n+1} = x_n(2-x_nR)$. Establish this relation by applying Newton's method to some f(x). Beginning with $x_0 = 0.02$, compute the reciprocal of 17 correct to six decimal digits or more by this rule. Tabulate the error at each step and observe the quadratic convergence.
- 6. Apply the secant method on the f(x) found in the previous question to evaluate the reciprocal for 17 correct to six decimal digits. Use the initial conditions $x_0 = 0.01$ and $x_1 = 0.02$.
- 7. Apply the fixed-point iteration method, starting with $x_0 = 3.1$, generate the sequence $\{x_n\}_{n=1}^{10}$ that approximates the solution for $x = g(x) = \ln(x) + 2$.
 - a) Show that $\{x_n\}$ converges linearly to x = 3.1419322.
 - b) Apply the Aitken's method to $\{x_n\}_{n=1}^{10}$ to speed up the convergence.
 - c) Apply the Steffensen's method to find $\tilde{x}_i, i = 0, 1, 2$.