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Problem setting

Two major problems:
1 Solving linear system Ax = b

Direct methods (preferred method)

Gaussian Elimination, matrix factorisation

Iterative methods (normally for sparse matrix) - Jacobi, Gauss-Seidel

Jacobi, Gauss-Seidel

2 Eigenvalue problem Av = λv

Deflation methods
Similarity transform methods
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Engineering Example: Kirchhoff’s Law

Example

The currents at different parts of an electrical network with many resistances and
a battery can be studied with Kirchhoff’s Law. Usually, the results of Kirchhoff’s
Law are several linear equations. Let denotes x1, x2, x3 and x4 are currents at
different loops, then the equations are

15x1 − 2x2 − 6x3 = 300

−2x1 + 12x2 − 4x3 − x4 = 0

−6x1 − 4x2 + 19x3 + 9x4 = 0

−x2 − 9x3 + 21x4 = 0

Figure: Electrical network
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Naive Gaussian Elimination

Normally the linear system is written as augmented matrix [A|b]. Naive Gaussian
Elimination is a two step process:

systematically applying row operations to get echelon forma11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
b1
b2
b3

→
× × ×

0 × ×
0 × ×

∣∣∣∣∣∣
b
b
b

→
× × ×

0 × ×
0 0 ×

∣∣∣∣∣∣
b
b
b


backward substitution to obtain x.

x3 = b3/a33

x2 = (b2 − a23x3)/a22

x1 = (b1 − a13x3 − a12x2)/a11
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Naive Gaussian Elimination Algorithm

Example

In the previous circuit example, we get the matrix equation:
15 02 06 0
−2 12 −4 −1
−6 −4 19 9
0 −1 −9 21

∣∣∣∣∣∣∣∣
300
0
0
0


Answer: [MATLAB code: nm03_naive_gaussian.m]

systematically applying row operations to get echelon form
15 −2 −6 0
−2 12 −4 −1
−6 −4 19 9
0 −1 −9 21

∣∣∣∣∣∣∣∣
300
0
0
0

→


15 −2 −6 0
0 11.73 −4 −1
0 0 14.64 9
0 0 0 26.43

∣∣∣∣∣∣∣∣
300
40

136.36
91.07


backward substitution x4 = 3.44, x3 = 7.29, x2 = 6.69 and x1 = 23.91.
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Caveat

In the followings, we assume that all systems that we are dealing are having
solutions. We exclude the cases where the systems are inconsistent or having
infinite solutions. Consider the following two systems

Example

x1 + x2 + x3 = 4 x1 + x2 + x3 = 4

2x1 + 2x2 + x3 = 4 2x1 + 2x2 + x3 = 6

x1 + x2 + 2x3 = 6 x1 + x2 + 2x3 = 6

inconsistent infinite solutions

when their row-reduced matrices1 1 1 | 4 7
2 2 1 | 4 6
1 1 2 | 6 6

→
1 1 1 | 4 7

0 0 −1 | −4 −2
0 0 1 | 2 2


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Naive Gaussian Elimination can fail in certain cases

Example (Zero pivot element)

0x1 + x2 = 1

x1 + x2 = 2

Remedy: pivoting / swapping rows.

Example (Ill-conditioned)

εx1 + x2 = 1

x1 + x2 = 2

when ε is small, solutions

x2 =
2− ε−1

1− ε−1
≈ 1, x1 = ε−1(1− x2) ≈ 0

becomes unreliable. Remedy: Pivoting.
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Partial Pivoting

Partial Pivoting - exchange pivot row with the row with maximum leading
element.

Apply the partial pivoting when the pivoting element is zero or smaller than
the leading element in the candidate row.

Example

Swap the equations in the previous slide:

x1 + x2 = 2

εx1 + x2 = 1

Answer:[
1 1 | 2
0 1− ε | 1− 2ε

]
=⇒ x2 =

1− 2ε

1− ε
≈ 1, x1 =

1 + ε

1− ε
≈ 1.
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Scaled Partial Pivoting

It is used when the leading element in the pivoting row is much smaller than
other element in the same row.

1 Define a scale factor si = max
1≤j≤n

|aij |.
2 Exchange pivoting row with row p where

|ap1|
sp

= max
1≤k≤n

|ak1|
sk

.

Example (4-digit floating-point arithmetic)

30.00x1 + 591400x2 = 591700

5.291x1 + 6.130x2 = 46.78

will gives the wrong answer x2 = 1.001 and x1 = −10.00 in a 4-digit
floating-point operations.
However, with scaled partial pivoting, a11/s1 = 0.5073× 10−4 and
a21/s2 = 0.8631, we should swap the two row. The answer after the pivoting
gives more accurate x2 = 1.001 and x1 = 10.00.
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Operations count for Gaussian Elimination

The number of arithmetic operations involve in Gaussian Elimination depends
on the size n× n of the matrix considered.

+/− operations always take less time to perform compared to ×/÷.

Consider the elimination step for row-i, that requires to perform

aij ← aij −
(

aik

akk

)
akj for (n− i) rows.

× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×
...

...
...

0 × × × ×


→



× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
...

...
...

0 0 × × ×


For each of the (n− i) rows,

need (n− i) ÷ operations for aik/akk = mik.
need (n− i)(n− i+ 1) ×/÷ operations for aij −mikakj .
need (n− i)(n− i+ 1) +/− operations for aij −mikakj .
thus, total +/− ops = (n− i)(n0i+ 1), total ×/÷ ops = (n− i)(n− i+ 2).
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Operations count for Gaussian Elimination (Cont.)

Repeating for all rows, then in the elimination stage:

Total +/− ops is:
n−1∑
i=1

(n− i)(n− i+ 1) =
n3 − n

3
∼ O(n3).

Total ×/÷ ops is:
n−1∑
i=1

(n− i)(n− i+ 2) =
1

6
(2n3 + 3n2 − 5n) ∼ O(n3).

As for the backward substitution stage:

Total +/− ops is: 1 +

n−1∑
i=1

(n− i+ 1) =
n2 − n

2
∼ O(n2).

Total ×/÷ ops is:
n−1∑
i=1

(n− i− 1 + 1) =
n2 + n

2
∼ O(n2).

Total operations count for Gaussian Elimination:

Total +/− ops is:
n3

3
+
n2

2
− 5n

6
.

Total ×/÷ ops is:
n3

3
+ n2 − n

3
.
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Operations count for Gaussian Elimination (Cont.)

n +/− ×/÷
3 17 11

10 375 430
50 42,875 44,150

100 338,250 343,300
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Matrix Factorisation (motivation)

From the previous slide, we know that in Gaussian Elimination:

operations count for elimination stage ∼ O(n3).
operations count for substitution stage ∼ O(n2).

Suppose the matrix A can be factorised into two triangular form A = LU
hen we could solve the Ax = b by just substitution.

The idea:
1 Write A = LU, thus Ax = LUx = b.
2 Define y = Ux, now Ax = b are into two equations Ly = b and Ux = y.
3 Since both L and U are triangular, both equation could be solved by

substitution operations.

Since substitution has the op count ∼ O(n2), it is expected to speed up the
process of solving Ax = b.

n n3/3 2n2 % reduction
10 3.3̄× 102 2× 102 40

100 3.3̄× 105 2× 104 94
1000 3.3̄× 108 2× 106 99.4
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Matrix Factorisation (motivation)

However, matrix factorisation method will not have much advantage over
naive Gaussian Elimination for one value of b.

This is because of the process required for factorising A into LU requires
O(n3/3) op count.

However, the factorisation method will be preferred if we are solving
Ax = bi for different values of bi, as one only need to factorise A once and
the same L and U could be applied to the different values of bi repeatedly.
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LU -Factorisation

Let A be a 3× 3 matrix and we would like to factorise into LU.

Let M1 and M2 be the transformation matrices that perform the elimination
operations:a11 a12 a13

a21 a22 a23
a31 a32 a33

→
a11 a12 a13

0 a22 a23
0 a32 a33

 →

a11 a12 a13
0 a22 a23
0 0 a33


A→ M1A →M2M1A

Note that, M1 =

 1 0 0
−m21 1 0
−m31 0 1

 and M2 =

1 0 0
0 1 0
0 −m32 1

 where

mij =
aij

ajj
.

Now, M2M1A = U, then A = M−11 M−12 U.

i.e. L = M−11 M−12 = L =

 1 0 0
m21 1 0
m31 m32 1

.
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LU Factorisation (example)

Example

Factorise A into LU and solve for Ax = b, where b = [1, 1,−3, 4]T .

A =


1 1 0 3
2 1 −1 1
3 −1 −1 2
−1 2 3 −1


ANSWER:

A =


1 0 0 0
2 1 0 0
3 4 1 0
−1 −3 0 1




1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13

 , y =


1
−1
−2
2

 , x =


−0.30769
1.76923

0
0.15385


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P TLU -Factorisation

LU -factorisation only work if A can be reduced by Gaussian Elimination
without pivoting.

If partial pivoting is required for controlling the round-off error, then we need
to have extra permutation matrix P to carry out the row exchange.

Thus, for Ax = b requires pivoting, we multiply P on both side: PAx = Pb.

Then, factorise PA, ie. PA = P−1LU.

Since P is symmetric, P−1 = PT , thus A = PTLU.

Example

Find the permutation matrix P for exchanging row 1 and row 2, then factorise the
matrix A.
ANSWER:0 1 0

1 0 0
0 0 1

0 2 3
1 1 −1
0 −1 1

 =

1 1 −1
0 2 3
0 −1 1

 =

1 0 0
0 1 0
0 −0.5 1

1 1 −1
0 2 3
0 0 2.5


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Special Matrices

Definition (Diagonally Dominant Matrix)

A n× n matrix A is said to be diagonally dominant when

|aii| ≥
∑
i=1
j 6=i

|aij |

holds for each of i = 1, 2, . . . , n.

Definition (Strictly Diagonally Dominant Matrix)

A matrix A is strictly diagonally dominant matrix if

|aii| >
∑
i=1
j 6=i

|aij |

for all i = 1, 2, . . . , n.
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Special Matrices (Cont.)

Theorem
A strictly diagonally dominant matrix A is nonsingular. Moreover, Gaussian
Elimination can be performed on a strictly diagonally dominant matrix without
row interchange.

Example
15 −2 −6 0
−2 12 −4 −1
−6 −4 19 9
0 −1 −9 21

 is diagonally dominant, but not strictly diagonally

dominant.
15 −2 −6 0
−2 12 −4 −1
−6 −4 19 7
0 −1 −9 21

 is strictly diagonally dominant, and determinant is

non-zero.
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Positive Definite Matrix

Definition (Positive Definite Matrix)

A matrix A is (strictly) positive definite if it is symmetric and if xTAx > 0 for
every non-zero n-dimensional vector x.

Definition (Leading Principal Submatrix)

A leading principal submatrix of a n× n matrix A is a matrix of form
a11 a12 . . . a1k
a21 a22 . . . a2k

...
... . . .

...
ak1 ak2 . . . akk


for some 1 ≤ k ≤ n.
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Positive Definite Matrix (Cont.)

Theorem
A symmetric matrix A is positive definite if and only if each of its leading
principal submatrices have positive determinants.

Example

A =

 2 −1 0
−1 2 −1
0 −1 2

 is positive definite since

A1 = [2] and det(A1) = 2 > 0

A2 =

[
2 −1
−1 2

]
and det(A2) = 3 > 0

A3 = A and det(A3) = 4 > 0

since the determinant for all leading principal submatrices is positive, thus A
is positive definite.

Check, xTAx = x21 + (x1 + x2)2 + (x2 − x3)2 + x23 ≥ 0.
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LDLT and LLT Factorisations

Theorem
A matrix A is positive definite if and only if Gaussian Elimination without row
interchange can be performed on the corresponding linear system Ax = b with all
pivot elements positive.

Corollary

If A is symmetric and strictly diagonally dominant, then A can be factorised into
the form of LDLT .

Corollary (Cholesky Factorisation)

If A is positive definite if and only if A can be factorised into the form LLT .
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LDLT and LLT Factorisations

Example (LDLT Factorisation)

A =

4 3 2
3 3 2
2 2 2

 =

 1 0 0
l21 1 0
l31 l32 1

d1 0 0
0 d2 0
0 0 d3

1 l21 l31
0 1 l32
0 0 1

 = d1 d1l21 d1l31
d1l21 d2 + d1l

2
21 d2l32 + d1l21l31

d1l31 d1l21l31 + d2l32 d1l
2
31 + d2l

2
32 + d3


Example ( LLT Factorisation)

A =

4 3 2
3 3 2
2 2 2

 =

l11 0 0
l21 l22 0
l31 l32 l33

l11 l21 l31
0 l22 l32
0 0 l33

 = l211 l11l21 l11l31
l11l21 l221 + l222 l21l31 + l22l32
l11l31 l21l31 + l22l32 l231 + l232 + l233


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Iterative Methods

Stationary Methods

Jacobi method

Gauss-Seidel method

Successive over-relaxation (SOR) method

Krylov subspace methods

Conjugate gradient

Generalized minimal residual

The idea

Like fixed-point iteration, setup the recurrence relation

Qx(k+1) = (Q−A)x(k) + b,

initial value x(0) and generates {x(k)}k=1 such that x(k) converges to the
solution x∗ for Ax∗ = b.

The can be different choices for Q depending on

the ease to solve or iteration
ensure convergence and rate of convergence
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Jacobi Method

Choose Q as the diagonal of A.

Let A = D− L−U =⇒ Dx(k+1) = (L + U)x(k) + b

The iterative scheme:

x(k+1) = D−1(L + U)x(k) + D−1b

or

x
(k+1)
i = −

n∑
(aij/aii)x

(k)
j + (bi/aii), 1 ≤ i ≤ n

The iterations will converge if A is strictly diagonally dominant.

Example

A =

 2 −1 0
−1 3 −1
0 −1 2

 and b =

 1
8
−5


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Gauss-Seidel Method

Choose Q as the lower triangular of A.

Let A = D + L−U =⇒ (D + L)x
(k+1)

= Ux(k) + b

The iterative scheme:

x(k+1) = (D + L)
−1

Ux(k) + (D + L)
−1

b

or

x
(k+1)
i = −

n∑
(aij/aii)x

(k+1)
j −

n∑
(aij/aii)x

(k)
j + (bi/aii), 1 ≤ i ≤ n

Example

A =

 2 −1 0
−1 3 −1
0 −1 2

 and b =

 1
8
−5


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Successive Over-relaxation (SOR) Method

Choose Q = 1
ω (D− ωL) where A = D− L−U and ω is a parameter.

The iterative scheme:

x(k+1) = Q−1(Q−A)x(k) + Q−1b

The parameter ω needs to choose in between 0 < ω < 2 to ensure
convergence.

Example

A =

 2 −1 0
−1 3 −1
0 −1 2

, b =

 1
8
−5

 and ω = 1.1.
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Convergence Theorem

Definition (Spectral Radius)

The spectral radius ρ(K) of a matrix K is the magnitude of the maximum
eigenvalues

ρ(K) = max
1≤i≤n

|λi|.

Theorem (Spectral Radius Theorem)

In order that the sequence generated by

x(k+1) = Kx(k) + c

to converge, regardless of initial point x(0), the necessary and sufficient condition
is that all eigenvalues of K lie in the open unit disc |z| < 1 or the spectral radius
ρ(K) < 1.
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Convergence Theorem (Cont.)

Theorem (Convergence theorem for Jacobi and Gauss-Seidel methods)

If A is diagonally dominant, the Jacobi and Gauss-Seidel methods converge for
any x(0).

Theorem (Convergence theorem for SOR method)

Suppose that A has positive diagonal elements and that 0 < ω < 2, the SOR
method converges for any x(0) if and only if A is positive definite.
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A-Conjugacy

Definition

If u and v are mutually orthogonal, if 〈u,v〉 = 0.

Definition
A-inner product of u and v is defined as

〈u,v〉A = 〈Au,v〉 = uTATv.

Definition

u and v are A-conjugate if 〈u,v〉A = 0.

Definition

A matrix A is positive definite if 〈x,x〉A ≥ 0.
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Conjugate Gradient Method

This is a popular iterative method for solving sparse system.

Consider a quadratic form

f(x) =
1

2
〈x,x〉A − 〈b,x〉+ c

and its gradient

∇f(x) =
1

2
(ATx + Ax)− b.

If A is symmetric, then ∇f(x) = Ax− b.

Therefore the linear system Ax = b is a critical point for f(x).

Thus, if A is a positive definite and symmetric, then we can solve Ax = b by
minimising f(x).
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Conjugate Gradient Method (Cont.)

Suppose x∗ = t1v
(1) + t2v

(2) + · · ·+ tnv
(n) is the true solution for Ax = b,

where:

{v(1),v(2), . . . ,v(n)} forms a mutually A-conjugate basis of Rn.

the coefficient is given by tk =
〈v(k),b〉
〈v(k),v(k)〉A

Instead of compute directly the exact solution, We will construct v(k)

iteratively to approximate x∗.

Given a reference point, x(k), we would like to know

a residual vector r(k) = b−Ax(k) associated with x(k).
a search direction v(k+1) that move away from x(k) and minimises f .
a update rule x(k+1) = r(k) + tkv

(k).

A natural search direction will be in the direction of steepest descent, ie. in
the direction of −∇f(x(k)) = r(k), however the convergence will be slow for
linear system.

Instead we use the A-conjugate set {v(1),v(2), . . . ,v(n)} of direction
vectors, and require that vectors {r(k)} are mutually orthogonal.
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Conjugate Gradient Method (Cont.)

Theorem

The residual vectors r(k), k = 1, 2, . . . n, for a conjugate gradient method, satisfy
the conditions

〈r(k),v(j)〉 = 0, for each j = 1, 2, . . . , k.

The algorithm
1 Given an initial point, x(0), compute

residual vector, r(0) = b−Ax(0)

first search direction v(1) is the steepest descent direction, v(1) = r(0)

2 Compute the new approximate x(k) = x(k−1) + tkv
(k), where

tk =
〈v(k), r(k−1)〉
〈v(k),Av(k)〉

=
〈r(k−1), r(k−1)〉
〈v(k),v(k)〉A

3 Prepare for the next iteration:

new residual vector r(k) = r(k−1) − tkAv(k)

new search direction, v(k+1) = v(k) + skv
(k), where sk =

〈r(k), r(k)〉
〈r(k−1), r(k−1)〉

4 Repeat Step 2 and 3 until desirable accuracy.
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Conjugate Gradient Method (Example)

Example

A =

4 3 0
3 4 −1
0 −1 4

, b =

 24
30
−24

, and x(0) = [0, 0, 0]T .
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Review on Eigenvalue Problem

Eigenvalue Problem
Ax = λx

The eigenvalues are zeros of characteristic polynomial, p(λ) = det(A− λx).

The algebraic multiplicity of an eigenvalue is the multiplicity of the
corresponding root of the characteristic polynomial.

The geometric multiplicity of an eigenvalue is the dimension of the associated
eigenspace.
If λ is eigenvalue of A, then

p(λ) is an eigenvalue of p(A) for any polynomial p.
then p(1/λ) is an eigenvalue for p(A−1), where A is nonsingular.
λk is an eigenvalue of Ak.
1/λ is an eigenvalue of A−1

If A is real and symmetric, then its eigenvalues are real, and eigenvectors are
mutually orthogonal.

If A is complex and Hermitian, then its eigenvalues are real, and eigenvectors
are mutually orthogonal (inner product with conjugate transpose).

If A is Hermitian and positive definite, then itst eigenvalues are positive.
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Schur’s decomposition

Definition (Similar Matrices)

Two matrices A and B are similar to each other, if there exist a nonsingular
matrix P such that A = P−1BP.

Theorem
Similar matrices have the same characteristic polynomial and eigenvalues.

Theorem (Schur’s Theorem)

Every square matrix is unitarily similar to a triangular matrix. U†AU = T.

Theorem

Every Hermitian (symmetric) matrix is unitarily (orthogonally) similar to a
diagonal matrix.
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Schur’s Decomposition (Cont.)

Example

Given a matrix A =

2 1 1
1 2 1
1 1 2

 Write the matrix into its Schur decomposition

form, T = U†AU.
ANSWER: [MATLAB code: nm03_schur.m]

[V, D] = eig(A)

The eigenvector columns {v1,v2,v3} in V are not mutually orthogonal.

Use Gram-Schmidt orthogonalisation to find a new set of orthonormal basis,
which gives the required unitary matrix U = [e1, e2, e3], ie.0.246474 −0.962242 −0.115507

0.147691 −0.080498 0.985752
0.957830 0.260021 −0.122274


The triangular matrix is given by

T = U†AU =

8.4853 3.1950 −0.46072
0 4.6318 −0.76123
0 0 1.8828


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Geřsgorin’s Theorem

Theorem (Geřsgorin Circle)

Let A be an n× n matrix and Ri denote the circle in the complex plane with
centre aii and radius

∑n
j=1,j 6=i |aij |; that is,

Ri =

z ∈ C

∣∣∣∣∣∣|z − aii| ≤
n∑

j=1,j 6=i

|aij | ,

where C denotes the complex plane. The eigenvalues of A are contained within
the union of these circles, R =

⋃n
i=1Ri. Moreover, the union of any k of the

circles that do not intersect the remaining (n− k) contains precisely k (counting
multiplicity) of the eigenvalues.
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Geřsgorin’s Theorem (Cont.)

Example

Let A =

 4 1 1
0 2 1
−2 0 9

 . Determine the Geřsgorin’s circles for A and find bounds

of the spectral radius of A.
ANSWER

Eigenvalues: 8.4853, 4.6318, 1.8828.
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Power Method

Let A be n× n matrix and its eigenvalues |λi| > |λ2| ≥ |λ3| ≥ . . . |λn| and

associated eigenvectors u(i), where Au(i) = λiu
(i), i = 1, 2, . . . , n.

Power method will computes the largest eigenvalue and its associated
eigenvector.

Choose an arbitrary starting vector x(0) ∈ Cn and
x(0) = c1u

(1) + c2u
(2) + · · ·+ cnu

(n) =
∑n

i=1 ciu
(i).

Then, generate the sequence {x(k)} from the recurrence relation

x(k+1) = Ax(k).

Note that,

x(k) = Akx(0) = Ak
n∑

i=1

ciu
(i) =

n∑
i=1

λki ciu
(i) = λk1

k∑
i=1

(
λi
λ1

)k

ciu
(i).

Thus, when k →∞, lim
k→∞

(
λi
λ1

)k

= 0, and lim
k→∞

Akx(0) = lim
k→∞

λk1c1u
(1).

However, the last term will diverges if |λ1| > 1 and converges to 0 if
|λ1| < 1, thus we need to scale Akx appropriately to ensure the limit is finite.
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Power Method

Let denote ε(k) =

k∑
i=2

(
λi
λ1

)k

ciu
(i), where limk→∞ ε(k) = 0. Then,

x(k) = λk1 [c1u
(1) + ε(k)].

Let φ be any linear functional on Cn such that φ(u(1)) 6= 0 and then,
φ(x(k)) = λk1

[
c1φ(u(1)) + φ(ε(k))

]
.

Then generate the sequence of ratios {rk}:

rk =
φ(x(k+1))

φ(x(k))
= λ1

[
c1φ(u(1)) + φ(ε(k+1))

c1φ(u(1)) + φ(ε(k))

]
,

where when k →∞, rk → λ1.

The algorithm (Ax = λx) :

1 choose a starting point x(0), for example [1, 1, 1]T

2 Repeat for N times:
1 y← Ax
2 r ← φ(y)/φ(x) (a common choise is φ(x) = x1.)
3 x← y/||y||∞
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Power Method (Cont.)

Example

Find the largest eigenvalue for A =

 4 1 1
0 2 1
−2 0 9

 .
ANSWER: [MATLAB code: nm03_power.m]

Choose a starting point, x(0) = [1, 1, 1]T and φ(x) = x1.

After 22 iteration r converges to the largest eigenvalue 8.4853.

Note that the power method could be accelerated by applying the Aitken’s
∆2 method.
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Inverse Power Method

Several modification could be done on the power method in order to compute the
other eigenvalues.

Case I : Smallest Eigenvalue

Ax = λx⇔ 1
λ
x = A−1x.

Since the smallest eigenvalue of A is the largest eigenvalue of A−1, thus we
could apply the power method x(k+1) = Ax(k).
To avoid calculating A−1, we could solve Ax(k+1) = x(k) by
LU -decomposition instead.

Example

Find the smallest eigenvalue for A =

 4 1 1
0 2 1
−2 0 9

 .
ANSWER: [MATLAB code: nm03_ipower_1.m]

Choose a starting point, x(0) = [1, 1, 1]T and φ(x) = x1.

Use MATLAB command A\x to compute A−1x.

After 14 iterations 1/r converges to the smallest eigenvalue 1.8828.
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(Shifted) Inverse Power Method

Case II : Shifted Inverse Power Method

Ax = λx⇔ (A− µI)x = (λ− µ)x⇔ 1
λ−µx = (A− µI)−1x.

Thus, we could apply inverse power method to find the smallest eigenvalue of
(A− µI).
With appropriate choice of µ, then we could find the eigenvalue of A that is
closest to µ.

Example

Find an eigenvalue for A =

 4 1 1
0 2 1
−2 0 9

 that is close to 4.

ANSWER: [MATLAB code: nm03_ipower_2.m]

Choose a starting point, x(0) = [1, 1, 1]T and φ(x) = x1.

Let B = A− µI and use MATLAB command B\x to compute B−1x.

After 14 iterations 1/r + µ converges to the smallest eigenvalue 1.8828.
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Power Method with Rayleigh Quotient

Definition
Let A be a real symmetric matrix, then the Rayleigh quotient of a vector x ∈ Rn

is defined as r(x) = xTAx
xTx

.

If u is an eigenvector of A, then r(u) = λ is the corresponding eigenvalue.

If x is not an eigenvector, then r(x) = α minimises f(α) = ||Ax− αx||2.

Thus, r(x) is a natural eigenvalue estimate if x is close, but not equal, to an
eigenvector.

In fact, r(x) is quadratically accurate as eigenvalue estimate when x→ u.

We could modify the power method to incorporate Rayleigh quotient to
speed up the convergence.

1 Repeat for N times:
1 y← Ax
2 x← y/||y||∞
3 r ← xTAx.
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Householder Transformation

A useful technique to find eigenvalues that are not suffer from too much round-off
errors is QR method. However, the QR method requires tridiagonal matrix as
input.

Definition (Householder Transformation)

Let w ∈ Rn with wTw = 1. The n× n matrix

P = I− 2wwT

is called a Householder transformation.

Theorem

A Householder transformation, P = I− 2wwT , is symmetric and orthogonal, ie
P−1 = P.

The aim of the Householder transform is to reduce an arbitrary symmetric matrix
to a tridiagonal matrix.
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Householder Method

Given a n× n matrix A, the Householder algorithm:
1 For k = 1 : n− 2, do

1 α = −sgn(a(k)k1,k
)

 n∑
j=k+1

(akjk)
2

1/2

,

2 r =

(
1

2
α2 − 1

2
αa

(k)
k+1,k

)2

,

3 w
(k)
1 = w

(2)
2 = · · · = w

(k)
3 = 0,

4 w
(k)
k+1 =

a
(k)
k+1,k

−α
2r

,

5 w
(k)
j =

a
(k)
jk

2r
, for each j = k + 2, . . . , n,

6 P(k) = I− 2w(k) · (w(k))T ,
7 A(k+1) = P(k)A(k)P(k).
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QR-Algorithm

Let A denote a symmetric tridiagonal matrix. The aim of QR-algorithm is to
decrease the off-diagnoal elements iteratively via similarity transforms.

1 Set A(0) = A.
2 Repeat for k = 1, 2, . . .

1 Q(k)R(k) = A(k−1), where Q is orthogonal and R is upper triangular.
2 A(k) = R(k)Q(k)

To construct the factoring matrices Q and R uses a product of n− 1
rotation matrices. R(k) = PnPn−1 . . .Pk+1A

(k).

Each of these rotation matrices reset the lower off-diagonal elements to zero
one-by-one.

The performance of the QR-algorithm can be improved by introducing a shift
on each step, ie work on the shifted matrix A− µI instead of A.
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THE END
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