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Problem setting

Two major problems:
@ Solving linear system Ax =b
o Direct methods (preferred method)
@ Gaussian Elimination, matrix factorisation
o lterative methods (normally for sparse matrix) - Jacobi, Gauss-Seidel
@ Jacobi, Gauss-Seidel
@ Eigenvalue problem Av = Av

o Deflation methods
o Similarity transform methods
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© Solving Linear Systems
@ Issues on Gaussian Elimination
@ Matrix Factorisation
@ Special Matrices
@ Iterative Methods
@ Stationary Methods
@ Conjugate Gradient Method
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Engineering Example: Kirchhoff's Law

Example

The currents at different parts of an electrical network with many resistances and
a battery can be studied with Kirchhoff's Law. Usually, the results of Kirchhoff’s
Law are several linear equations. Let denotes x1, z3, 3 and x4 are currents at
different loops, then the equations are

1521 — 229 — 623 = 300
—2x1 + 1229 — 43— 24 = 0
—6x1 —4x9 + 1923 +924 = 0
—2ro — 923+ 21y, = O

J \
300volts ! Xy |
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© Solving Linear Systems
@ Issues on Gaussian Elimination
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Naive Gaussian Elimination

Normally the linear system is written as augmented matrix [A|b]. Naive Gaussian
Elimination is a two step process:

@ systematically applying row operations to get echelon form

ai; a1z a13 b1 X X X |b X X
agy A22 Q23 bg — 10 x X|b| =10 X
0 x x1b 0 0

X X X
oo T

az1  asx ass|bs

@ backward substitution to obtain x.

x3 = bs/ass
xo = (b2 — ag3x3)/azn
z1 = (b1 —a3z3 — aiaxe)/an
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Naive Gaussian Elimination Algorithm

In the previous circuit example, we get the matrix equation:
15 02 06 0 (300
-2 12 -4 -1]0
-6 —4 19 9]0
0 -1 -9 21|0

Answer: [MATLAB code: nm03_naive_gaussian.m]

@ systematically applying row operations to get echelon form

15 -2 -6 0 |300 15 -2 —6 0 300
-2 12 -4 -1]0 . 0 11.73 -4 -1 40
-6 —4 19 910 0 0 14.64 9 |136.36
0 -1 -9 210 0 0 0 26.43 | 91.07

@ backward substitution x4 = 3.44, x3 = 7.29, x5 = 6.69 and z1 = 23.91.
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Caveat

In the followings, we assume that all systems that we are dealing are having
solutions. We exclude the cases where the systems are inconsistent or having
infinite solutions. Consider the following two systems

Example

$1+IL’2+2’,’3:4 {131+{L'2+.'173:4
2x1 +2x9 +x3 =4 221 + 229 + 23 =6
xr1 + o+ 223 =6 T+ 29+ 223 =06

inconsistent infinite solutions

when their row-reduced matrices

111 | 47 11 1 | 4 7
2 2 1 | 4 6/—=1]00 -1 | -4 -2
11266 00 1 | 2 2
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Naive Gaussian Elimination can fail in certain cases

Example (Zero pivot element)

0z + 29
T +x9 = 2

Remedy: pivoting / swapping rows.

Example (lll-conditioned)

€X1 + To

T, +x9 = 2
when € is small, solutions

P ="

=5 — =~ 1, 1 =¢ (1 —1z3) =0
—€

T2

becomes unreliable. Remedy: Pivoting.
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Partial Pivoting

@ Partial Pivoting - exchange pivot row with the row with maximum leading
element.

@ Apply the partial pivoting when the pivoting element is zero or smaller than
the leading element in the candidate row.

Example

Swap the equations in the previous slide:

T +x9 = 2

€ex1+x2 = 1

Answer:
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Scaled Partial Pivoting

@ It is used when the leading element in the pivoting row is much smaller than
other element in the same row.

@ Define a scale factor s; = max |a;|.
1<j<n
@ Exchange pivoting row with row p where
lap:| _ |aki|

Sp

Example (4-digit floating-point arithmetic)

30.00z1 + 591400z, = 591700
9.291z1 +6.130x2 = 46.78

will gives the wrong answer o = 1.001 and z; = —10.00 in a 4-digit
floating-point operations.

However, with scaled partial pivoting, a11/s1 = 0.5073 x 10~* and

as1/s2 = 0.8631, we should swap the two row. The answer after the pivoting
gives more accurate xo = 1.001 and x; = 10.00.
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Operations count for Gaussian Elimination

@ The number of arithmetic operations involve in Gaussian Elimination depends
on the size n x n of the matrix considered.

@ +/— operations always take less time to perform compared to x/=+.
o Consider the elimination step for row-i, that requires to perform

.. L ik . _q
Aij < Qij (a;k) a; for (n — 1) rows.

[x x x x X] [x x x x X]
0 X X X X 0 X x X X
0 X X X X 0 0 x x x
0 x X x x| 7]0 0 x x x
0 X X X X 0 0 x x x

@ For each of the (n — i) rows,

need (n — i) =+ operations for a;i/ark = Mik.
need (n —4)(n — i+ 1) x/+ operations for a;; — mikay;.

need (n —4)(n — i+ 1) +/— operations for a;; — mikay;.
thus, total +/— ops = (n — ¢)(n0i + 1), total x/+ ops = (n —i)(n — :
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Operations count for Gaussian Elimination (Cont.)

@ Repeating for all rows, then in the elimination stage:
n—1 3
e Total +/— ops is: Z(n —i)n—i+1)=

i=1
n—1

o Total x/+ opsis: 3 (n—i)(n—i+2) = é(an +3n% = 5n) ~ O(n).

=1
@ As for the backward substitution stage:
n—1 2

n°—n
Total 4+/— is: 1 E —i+1)= ~
o Total +/— ops is +i:1(n i+1) 3
n—1 n2+n
Total x/+ E —i—141)=
e Total x/+ ops is (n—1 +1) 3

i=1
@ Total operations count for Gaussian Elimination:

3 2
. 5
o Total +/— opsis: = + = — 2

3 2 6

. n 2 n

Total x/+ D= - —.
e Total x/+ ops is 3+n 3
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Operations count for Gaussian Elimination (Cont.)

n +/— X[+

3 17 11
10 375 430
50 42,875 44,150
100 338,250 343,300

Y. K. Goh (UTAR)
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© Solving Linear Systems

@ Matrix Factorisation
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Matrix Factorisation (motivation)

@ From the previous slide, we know that in Gaussian Elimination:
o operations count for elimination stage ~ O(n®).
o operations count for substitution stage ~ O(n?).
@ Suppose the matrix A can be factorised into two triangular form A = LU
hen we could solve the Ax = b by just substitution.
@ The idea:
@ Write A = LU, thus Ax =LUx=b.
@ Define y = Ux, now Ax = b are into two equations Ly = b and Ux = y.
@ Since both L and U are triangular, both equation could be solved by
substitution operations.
@ Since substitution has the op count ~ O(n?), it is expected to speed up the
process of solving Ax = b.

n n3/3 2n? % reduction
10 3.3 x 102 2 x 102 40
100 3.3 x 10° 2 x 104 94
1000 3.3 x 108 2 x 106 99.4
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Matrix Factorisation (motivation)

@ However, matrix factorisation method will not have much advantage over
naive Gaussian Elimination for one value of b.

@ This is because of the process required for factorising A into LU requires
O(n?/3) op count.

@ However, the factorisation method will be preferred if we are solving
Ax = b; for different values of b;, as one only need to factorise A once and
the same L and U could be applied to the different values of b; repeatedly.
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LU-Factorisation

@ Let A be a 3 x 3 matrix and we would like to factorise into LU.

@ Let M; and M, be the transformation matrices that perform the elimination

operations:
ailr a2
a21 Aa22
a31 as2

@ Note that, M; =

a;j
Mmij = =
33

a13 air a2 ai3 ailr a2 aig
az3| — 0 axx as3| — |0 ax ass
a33 0 azz ass 0 0 ass
A — MlA — MleA
1 0 0 1 0 0
—mso1 1 0| and My = [0 1 0| where
—ms1 0 1 0 —ms2 1

o Now, MoM;A = U, then A = M;'M;'U.

oie L=M;"M;'=L=|my 1 0f.

1 0 0

m3y mgz 1

Y. K. Goh (UTAR)
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LU Factorisation (example)

Example
Factorise A into LU and solve for Ax = b, where b = [1,1, -3, 4]T.
1 1 0 3
2 1 -1 1
LS 3 -1 -1 2
-1 2 3 1
ANSWER:

1 0 0 Oof (1 1 0 3 1 —0.30769
A_|2 T 000 -1 -1 -5 _ || | 176923
(3 4 1o0llo 0o 3 13| YT =21 *T| o

-1 -3 0 1] 10 O 0 -13 2 0.15385
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PT LU-Factorisation

@ LU-factorisation only work if A can be reduced by Gaussian Elimination
without pivoting.

o If partial pivoting is required for controlling the round-off error, then we need
to have extra permutation matrix P to carry out the row exchange.

@ Thus, for Ax = b requires pivoting, we multiply P on both side: PAx = Pb.

@ Then, factorise PA, ie. PA = P~1LU.

@ Since P is symmetric, P~! = PT, thus A = PTLU.

Find the permutation matrix P for exchanging row 1 and row 2, then factorise the
matrix A.
ANSWER:

0
0
1
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© Solving Linear Systems

@ Special Matrices
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Special Matrices

Definition (Diagonally Dominant Matrix)

A n x n matrix A is said to be diagonally dominant when

laiil > lai]
=1

J#i

holds for each of : =1,2,...,n.

Definition (Strictly Diagonally Dominant Matrix)

A matrix A is strictly diagonally dominant matrix if

|uii| > |[L'LH|
J
i=1

foralli=1,2,...,n.
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Special Matrices (Cont.)

Theorem

A strictly diagonally dominant matrix A is nonsingular. Moreover, Gaussian
Elimination can be performed on a strictly diagonally dominant matrix without
row interchange.

| A

Example

(15 -2 -6 0

-2 12 -4l is diagonally dominant, but not strictly diagonally

-6 —4 19 9
| 0 -1 -9 21]
dominant.

15 -2 —6 0
2 12 —4 -1
6 —4 19 7
0 -1 -9 21
non-zero.

is strictly diagonally dominant, and determinant is
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Positive Definite Matrix

Definition (Positive Definite Matrix)

A matrix A is (strictly) positive definite if it is symmetric and if xT Ax > 0 for
every non-zero n-dimensional vector x.

A\

Definition (Leading Principal Submatrix)

A leading principal submatrix of a n X n matrix A is a matrix of form

a1 a12 coo a1k
a1 a2 coo ast
a1 Qg ... ALk

for some 1 < k < n.
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Positive Definite Matrix (Cont.)

A symmetric matrix A is positive definite if and only if each of its leading
principal submatrices have positive determinants.

I
| A

Example
2 -1 0

A= |-1 2 —1| is positive definite since
0o -1 2

e Ay =[2] and det(A1) =2>0

As = [_21 | and det(Az) = 3> 0

As = A and det(Ag) =4 > 0

since the determinant for all leading principal submatrices is positive, thus A
is positive definite.

o Check, xTAx = 22 + (z1 + x2)% + (22 — 23)% + 2% > 0.
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LDLT and LLT Factorisations

A matrix A is positive definite if and only if Gaussian Elimination without row
interchange can be performed on the corresponding linear system Ax = b with all
pivot elements positive.

If A is symmetric and strictly diagonally dominant, then A can be factorised into
the form of LDL” .

Corollary (Cholesky Factorisation)

If A is positive definite if and only if A can be factorised into the form LL” .
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LDLT and LLT Factorisations

Example (LDL" Factorisation)
0 l31

4 3 2 1 0 0f|di O 1 In
3 3 2l =laz 1 0] ({0 do 0] [0 1 I3 =
2 2 2 0 0 1

A:
0 0 ds

dl d1l21 d1l31
dyloy do + d1l3, dalzs + dilarls
dqlz1  dilailsy + dalso dll§1 + d2l§2 +ds

Example ( LL" Factorisation)

i 0 0 [l lor I

l31 l32 1

4 3 2
A=13 3 2| =lyy oy 0|0 ln Is| =
134 l11l21 li1l31
li1l2; 2, + 13 lo1l31 + loalso
hialsy  loalsy +loolza  13; + 135 + 135
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@ |terative Methods
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Iterative Methods

Stationary Methods

@ Jacobi method

o Gauss-Seidel method

@ Successive over-relaxation (SOR) method
Krylov subspace methods

o Conjugate gradient

@ Generalized minimal residual
The idea

o Like fixed-point iteration, setup the recurrence relation
Qx* ) = (Q - A)x™M +b,

initial value x(©) and generates {x(®)},_; such that x(*) converges to the
solution x* for Ax™ = b.
@ The can be different choices for Q depending on

o the ease to solve or iteration
e ensure convergence and rate of convergence
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© Solving Linear Systems

@ Stationary Methods
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Jacobi Method

@ Choose Q as the diagonal of A.
olet A=D-L-U = Dx*V=(@L+Ux® +b

@ The iterative scheme:

xkD = DL+ U)x® + Db
or
n
J?EkJrl) = - Z(aw/a”)xyc) + (bi/aii), 1<i<n

@ The iterations will converge if A is strictly diagonally dominant.
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Gauss-Seidel Method

@ Choose Q as the lower triangular of A.
olet A=D+L-U = (D+Lx*"=0Ux® +b
@ The iterative scheme:

xFD = (D+L)'Ux® +(D+L)"'b
or
Y= - Z(aij/aii)$§k+l) - Z(aij/%)iﬂék) + (bi/aii),1 <i<n
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Successive Over-relaxation (SOR) Method

@ Choose Q = 1 (D — wL) where A =D — L — U and w is a parameter.

@ The iterative scheme:

D = Q7 H(Q-A)x®P +Q'b

@ The parameter w needs to choose in between 0 < w < 2 to ensure
convergence.

A=|-1 3 -1|,b=|8|andw=1.1.
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Convergence Theorem

Definition (Spectral Radius)

The spectral radius p(K) of a matrix K is the magnitude of the maximum
eigenvalues

p(K) = max |A].

1<i<n

Theorem (Spectral Radius Theorem)

In order that the sequence generated by
xk D — Kx® 4 ¢
to converge, regardless of initial point x\9), the necessary and sufficient condition

is that all eigenvalues of K lie in the open unit disc |z| < 1 or the spectral radius
p(K) < 1.
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Convergence Theorem (Cont.)

Theorem (Convergence theorem for Jacobi and Gauss-Seidel methods)

If A is diagonally dominant, the Jacobi and Gauss-Seidel methods converge for
(0)
any x\9).

Theorem (Convergence theorem for SOR method)

Suppose that A has positive diagonal elements and that 0 < w < 2, the SOR
method converges for any x\°) if and only if A is positive definite.
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© Solving Linear Systems

@ Conjugate Gradient Method
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A-Conjugacy

Definition
If u and v are mutually orthogonal, if (u,v) = 0.

Definition
A-inner product of u and v is defined as

(u,v)a = (Au,v) = ulATv.

Definition

u and v are A-conjugate if (u,v)a = 0.

Definition
A matrix A is positive definite if (x,x)a > 0.
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Conjugate Gradient Method

@ This is a popular iterative method for solving sparse system.

o Consider a quadratic form

F69) = S0xx)a — (byx) + ¢

and its gradient
1
Vfx) = §(ATX + Ax) —b.

o If A is symmetric, then Vf(x) = Ax — b.
@ Therefore the linear system Ax = b is a critical point for f(x).

@ Thus, if A is a positive definite and symmetric, then we can solve Ax = b by
minimising f(x).
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Conjugate Gradient Method (Cont.)

o Suppose x* = t;v() +t,v@ ... 4 ¢, v(" is the true solution for Ax = b,
where:
o {v v® . v} forms a mutually A-conjugate basis of R™.
(v, b)
ORI
o Instead of compute directly the exact solution, We will construct v(*)
iteratively to approximate x*.

o the coefficient is given by tx =

@ Given a reference point, x(*), we would like to know
o a residual vector 1) = b — Ax™® associated with x(¥.
o a search direction v\**1) that move away from x*) and minimises f.
e a update rule xFHD = p(B) g v (),

@ A natural search direction will be in the direction of steepest descent, ie. in
the direction of —V f(x(®)) = r(¥) however the convergence will be slow for
linear system.

o Instead we use the A-conjugate set {v(1) v(®) .. v(™} of direction
vectors, and require that vectors {r(®¥)} are mutually orthogonal.
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Conjugate Gradient Method (Cont.)

The residual vectors r™*) k= 1,2,...n, for a conjugate gradient method, satisfy
the conditions

<r(k),v(j)> =0, foreachj=1,2,... k.

The algorithm
@ Given an initial point, x(9), compute
o residual vector, r'®¥ = b — Ax®
o first search direction v(!) is the steepest descent direction, v = ¢©

@ Compute the new approximate x(*) = x*=1 4 ¢, v(¥) where
<V(k) r(k—l)> <r(k—1) r(k—l)>
tk — ) — )
<V(}’<:)7 AV(k)> <V(’f)’ V(k)>A
© Prepare for the next iteration:

o new residual vector r*®) = p(b=1) _ tkAv(k)

etion (D) (k) (k) (™, r®)
e new search direction, v = v\ 4+ s v\ where s = W
©Q Repeat Step 2 and 3 until desirable accuracy.

Y. K. Goh (UTAR)
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Conjugate Gradient Method (Example)

4 3 0 24
A=1|3 4 —1|,b= |30 |,andx® =10,0,0]".
0 -1 4 —24
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© Eigenvalue Problem
@ Schur’s Decomposition
@ Power Method
@ Inverse Power Method
@ QR Method and Householder Transformation
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Review on Eigenvalue Problem

Eigenvalue Problem
Ax = x

@ The eigenvalues are zeros of characteristic polynomial, p(\) = det(A — Ax).

@ The algebraic multiplicity of an eigenvalue is the multiplicity of the
corresponding root of the characteristic polynomial.

@ The geometric multiplicity of an eigenvalue is the dimension of the associated
eigenspace.

o If X is eigenvalue of A, then

e p(A) is an eigenvalue of p(A) for any polynomial p.

then p(1/)) is an eigenvalue for p(A™"), where A is nonsingular.

o \¥ is an eigenvalue of A*.

e 1/Xis an eigenvalue of A™!

o If A is real and symmetric, then its eigenvalues are real, and eigenvectors are
mutually orthogonal.

o If A is complex and Hermitian, then its eigenvalues are real, and eigenvectors
are mutually orthogonal (inner product with conjugate transpose). m
o If A is Hermitian and positive definite, then itst eigenvalues are positive:
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© Eigenvalue Problem
@ Schur’s Decomposition
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Schur’s decomposition

Definition (Similar Matrices)

Two matrices A and B are similar to each other, if there exist a nonsingular
matrix P such that A = P~ !BP.

Similar matrices have the same characteristic polynomial and eigenvalues.

Theorem (Schur's Theorem)

Every square matrix is unitarily similar to a triangular matrix. UTAU = T.

Every Hermitian (symmetric) matrix is unitarily (orthogonally) similar to a
diagonal matrix.
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Schur’'s Decomposition (Cont.)

Example

2 1 1
Given a matrix A = [1 2 1| Write the matrix into its Schur decomposition
1 1 2

form, T = UTAU.
ANSWER: [MATLAB code: nm03_schur.m]

o [V, D] = eig(A)
@ The eigenvector columns {v1, va,v3} in V are not mutually orthogonal.

@ Use Gram-Schmidt orthogonalisation to find a new set of orthonormal basis,
which gives the required unitary matrix U = [e1, eo, €3], ie.
0.246474 —0.962242 —0.115507
0.147691 —0.080498  0.985752
0.957830  0.260021 —0.122274
@ The triangular matrix is given by
8.4853 3.1950 —0.46072
T=UAU=| 0 4.6318 —0.76123
0 0 1.8828

y
Y. K. Goh (UTAR) Numerical Methods - Numerical Linear Algebra | 2013 47 / 62




Gersgorin's Theorem

Theorem (Gerdgorin Circle)

Let A be an n x n matrix and R; denote the circle in the complex plane with
centre a;; and radius 327_, . ;|aij|; that is,

n

R;=42z€Cllz—ay| < Z |aijl
j=L#i

where C denotes the complex plane. The eigenvalues of A are contained within
the union of these circles, R = U?=1 R;. Moreover, the union of any k of the
circles that do not intersect the remaining (n — k) contains precisely k (counting
multiplicity) of the eigenvalues.
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Ger$gorin's Theorem (Cont.)

Example
4 1 1

Let A= | 0 2 1|.Determine the Gersgorin's circles for A and find bounds
-2 0 9

of the spectral radius of A.

ANSWER
o Eigenvalues: 8.4853, 4.6318, 1.8828.

Imaginary
axis

Two eigenvalues One eigenvalue

2
1A LD

+— —+—+ » Real axis
-1 1%6 J8 9 10 /11
-2
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© Eigenvalue Problem

@ Power Method
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Power Method

Let A be n x n matrix and its eigenvalues |A;| > [A2| > |A3] > ...|A\n| and
associated eigenvectors u(®, where Au'” = \u®,i=1,2,...,n

Power method will computes the largest eigenvalue and its associated
eigenvector.

Choose an arbitrary starting vector x(¥) € C" and
x0 = ciu® + cou® 4o e u™ =37 cu.

Then, generate the sequence {x(*)} from the recurrence relation

xFHD) — Ax (R,

Note that,

n n k
, , A 4
x®) = AFx(0) = Ak E_ cu® = E_ Mecu® = \F 2 (/\1) ciul,

2

M=

A1 k—o0

However, the last term will diverges if |A1| > 1 and converges to O if
|A1] < 1, thus we need to scale A¥x appropriately to ensure the limit isBi

k
Thus, when k£ — oo, hm ()\) =0, and lim AFx(0) = hm )\kclu( )
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Power Method

k k
o Let denote €*) = Z (j\\l) ciu® | where limy_,o €®) = 0. Then,
i=2 N1
xF) = \e[epu® 4 €],
o Let ¢ be any linear functional on C” such that ¢(u®) # 0 and then,
HxD) = Mk [er6(uD) + o(e®)].
@ Then generate the sequence of ratios {r}}:

o) | Tes) + get D)
=Sy = [ ey

where when k — oo, 1 — Aq.
The algorithm (Ax = Ax) :
@ choose a starting point x(9), for example [1,1,1]7
@ Repeat for N times:
Q0 y<+ Ax

@ 7« ¢(y)/$(x) (a common choise is ¢p(x) = z1.)
0 x < y/llyll=
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Power Method (Cont.)

4 1 1
Find the largest eigenvalue for A= | 0 2 1
-2 0 9
ANSWER: [MATLAB code: nm03_power .m]
@ Choose a starting point, x(©) = [1,1,1]7 and ¢(x) = z;.

o After 22 iteration r converges to the largest eigenvalue 8.4853.

@ Note that the power method could be accelerated by applying the Aitken's
A? method.
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© Eigenvalue Problem

@ |nverse Power Method
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Inverse Power Method

Several modification could be done on the power method in order to compute the
other eigenvalues.
@ Case | : Smallest Eigenvalue
e Ax =) x & %x =A"'x.
o Since the smallest eigenvalue of A is the largest eigenvalue of A™', thus we
could apply the power method x*+1) = Ax(®.
o To avoid calculating A™!, we could solve Ax*T1) = x(*) py
LU-decomposition instead.

Example

4 1
Find the smallest eigenvalue for A= | 0 2
-2 0
ANSWER: [MATLAB code: nm03_ipower_1.
o Choose a starting point, x(©) = [1,1,1]7 and ¢(x) = 2.
o Use MATLAB command A\x to compute A~ 'x.
o After 14 iterations 1/r converges to the smallest eigenvalue 1.8828.

m]
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(Shifted) Inverse Power Method

@ Case Il : Shifted Inverse Power Method
s Ax= X x<e (A—uhx=\N—px < Aflux =(A—ul) 'x.
e Thus, we could apply inverse power method to find the smallest eigenvalue of
(A — puI).
o With appropriate choice of p, then we could find the eigenvalue of A that is
closest to w.

4 1 1

Find an eigenvalue for A= | 0 2 1| thatis close to 4.
-2 0 9

ANSWER: [MATLAB code: nm03_ipower_2.m]

o Choose a starting point, x(©) = [1,1,1]7 and ¢(x) = z;.
@ Let B= A — uI and use MATLAB command B\x to compute B~!x.
o After 14 iterations 1/r + p converges to the smallest eigenvalue 1.8828.
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Power Method with Rayleigh Quotient

Definition

Let A be a real symmetric matrix, then the Rayleigh quotient of a vector x € R"
xT Ax

is defined as r(x) = *+*.

o If uis an eigenvector of A, then r(u) = A is the corresponding eigenvalue.
e If x is not an eigenvector, then r(x) = a minimises f(a) = |[|Ax — ax||s.

@ Thus, r(x) is a natural eigenvalue estimate if x is close, but not equal, to an
eigenvector.

@ In fact, r(x) is quadratically accurate as eigenvalue estimate when x — u.

@ We could modify the power method to incorporate Rayleigh quotient to
speed up the convergence.
© Repeat for N times:
Q y <+ Ax

@ x +y/llylles
@ r+ xTAx.
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© Eigenvalue Problem

@ QR Method and Householder Transformation
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Householder Transformation

A useful technique to find eigenvalues that are not suffer from too much round-off

errors is QR method. However, the QR method requires tridiagonal matrix as
input.

Definition (Householder Transformation)

Let w € R™ with wl'w = 1. The n X n matrix
P=1-2ww’

is called a Householder transformation.

A Householder transformation, P = I — 2ww , is symmetric and orthogonal, ie
P'=P.

The aim of the Householder transform is to reduce an arbitrary symmetric matrix
to a tridiagonal matrix.
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Householder M d

Given a n X n matrix A, the Householder algorithm:
Q@ Fork=1:n-2,do

1/2
k kN2
@ a=-sen(a)y) | Y (@]
j=k+1
12 1
Q@ r= 504 — iozakJr)L,c s
o wgk) = wéjj) = = wék) =0,
0 it - e
Ky
e wJ(- =2k foreachj=k+2,...,n,
0 P® =1 —2w® . (wl)T,
@ AG+D — pMAWP®).
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Q) R-Algorithm

Let A denote a symmetric tridiagonal matrix. The aim of ) R-algorithm is to
decrease the off-diagnoal elements iteratively via similarity transforms.

Q Set AO) = A,

@ Repeat for k=1,2,...

o Q(k)R(k) = A®D | where Q is orthogonal and R is upper triangular.
0 A® =RMQ®

@ To construct the factoring matrices Q and R uses a product of n — 1
rotation matrices. R*) =P, P,,_; ... P; 1 AF).

@ Each of these rotation matrices reset the lower off-diagonal elements to zero
one-by-one.

@ The performance of the @ R-algorithm can be improved by introducing a shift
on each step, ie work on the shifted matrix A — uI instead of A.
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THE END
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