# Numerical Methods - Interpolation & Splines

Y. K. Goh

Universiti Tunku Abdul Rahman

2013





- Introduction
- 2 Interpolating Polynomials
  - Existence and Uniqueness of Interpolating Polynomial
  - Lagrange Interpolating Polynomial
  - Divided Difference & Newton Interpolating Polynomials
- Splines





#### Introduction

The Problem: Given a set of data

| x | $x_0$ | $x_1$ | <br>$x_n$ |
|---|-------|-------|-----------|
| y | $y_0$ | $y_1$ | <br>$y_n$ |

We can have three different scenario to ask questions:

- Can we reproduce the points **exactly** by a simple function p? Interpolation.
- Assume the points are generated from complicated (usually means) computationally expensive) function f, can we find a simpler function g to reproduce reasonable (usually means within the full machine precision) approximation to f? – Interpolation.
- Assume points contains errors, can we reproduce the points approximately by a simple function,  $\hat{\mathbf{y}} = \hat{\mathbf{y}}(x)$ ? – Curve fitting.
- Depending on the strategies to treat the problem we can:
  - construct interpolating polynomial of degree  $m, p_m$ .
  - construct spline of degree m, S.
  - construct the least square fit to the curve.
- We will cover only interpolating polynomials and splines. (百)人(國)人(軍)人(軍)



- Introduction
- Interpolating Polynomials
  - Existence and Uniqueness of Interpolating Polynomial
  - Lagrange Interpolating Polynomial
  - Divided Difference & Newton Interpolating Polynomials
- Splines





## Interpolation

**The Problem:** Given a set of data

| x | $x_0$ | $x_1$ | <br>$x_n$ |
|---|-------|-------|-----------|
| y | $y_0$ | $y_1$ | <br>$y_n$ |

- Interpolation is to find a function f such that reproduces the given data points exactly, ie  $f(x_i) = y_i$ , for  $x_0 < x < x_n$ .
- The given data points  $(x_i, y_i)$  are called nodes.
- There is no other information in between,  $x_i < x < x_{i+1}$ , we let f be the exact function (which is unknown to us) that generates the data.
- In most problem, we want a simple function, usually a polynomial, p(x) to approximate f (Weierstraß theorem).
- The main reason for using polynomial in interpolation is that the derivative and integration are easy to determine.
- Other commonly used classes of interpolation functions are rational functions and trigonometric functions (Fourier series).

## Weierstraß Theorem

# Theorem (Weierstraß Approximation Theorem)

Suppose f is defined and continuous on [a,b]. For each  $\epsilon > 0$ , there exists a polynomial p(x) such that

$$|f(x) - p(x)| < \epsilon$$
, for all  $x \in [a, b]$ .

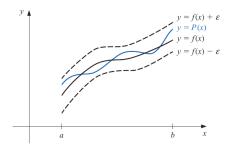


Figure: Illustration of Weierstraß Theorem.



- Introduction
- Interpolating Polynomials
  - Existence and Uniqueness of Interpolating Polynomial
  - Lagrange Interpolating Polynomial
  - Divided Difference & Newton Interpolating Polynomials
- Splines



# Existence and Uniqueness

### Theorem (Existence and Uniqueness)

Let  $\{x_i\}_{i=0}^n$  be (n+1) distinct points in [a,b]. Let  $\{y_i\}_{i=0}^n$  be any set of real numbers, then there exists a unique polynomial of degree n,  $p(x) \in \mathcal{P}_n$ , such that  $p(x_i) = y_i, \forall i \in [0,n]$ .

- Existence: Proof by construction of  $p \in \mathcal{P}_n$  by Newton algorithm.
- Uniqueness: Proof by contradiction.
- ullet Implication: Suppose we have n+1 points, the theorem tell us there is one and only one polynomial of degree n that fit all the data points.



# Newton's Algorithm

We will construct a polynomial p that passes through all the n+1 points:

- For n=0, we choose  $p_0(x)=y_0$ .
- ② For  $n \ge 1$ , we construct the polynomial recursively with

$$p_k(x) = p_{k-1}(x) + c(x - x_0)(x - x_1) \dots (x - x_{k-1})$$

where the constant c is determined from the condition  $p_k(x_k) = y_k$ .

### Example

Construct the Newton polynomial of degree  $\leq 2$  that interpolates the points (1,2),(3,5),(4,8).

#### **ANSWER:**

- First point (1,2),  $p_0(x) = 2$ .
- First two points:  $p_1(x) = p_0(x) + c_1(x-1)$ . Since  $p_1(3) = 5$ , we get  $2 + 2c_1 = 5 \implies c_1 = 3/2$ , ie.  $p_1(x) = 2 + \frac{3}{2}(x-1)$ .
- Similarly,  $p_2(x)=p_1(x)+c_2(x-1)(x-3)$ . Since  $p_2(4)=8$ , we have  $8=2+\frac{3}{2}(3)+c_2(3)(1) \implies c_2=\frac{1}{2}$ , ie.  $p_2(x)=2+\frac{3}{2}(x-1)+\frac{1}{2}(x-1)(x-3)$ .

# Uniqueness of Interpolating Polynomial

The proof of the uniqueness of interpolating polynomial of degree n utilised the Fundamental Theorem of Algebra.

### Theorem (Fundamental Theorem of Algebra)

A polynomial  $p(x) = a_0 + a_1x + \cdots + a_kx^k$  of degree k cannot have more than kroots unless  $p(x) \equiv 0$ .

- Let p be the Newton polynomial of degree n that passes through the n+1distinct points.
- Let q be another distinct polynomial of degree n that also passes through the same n+1 points.
- Let r(x) = q(x) p(x), and which is also a polynomial of degree at most n.
- Since at the nodes  $q(x_i) = p(x_i), 0 \le i \le n$ , thus there are at least n+1points where r(x) is zero. From Fundamental Theorem of Algebra, this can only happens when  $r(x) \equiv 0$ , ie.  $q(x) \equiv p(x)$  which contradict with the assertion that q(x) is different from p(x).

- Introduction
- Interpolating Polynomials
  - Existence and Uniqueness of Interpolating Polynomial
  - Lagrange Interpolating Polynomial
  - Divided Difference & Newton Interpolating Polynomials
- Splines



11 / 29



# Cardinal Polynomial

## Definition (Cardinal Polynomial)

Given a set of points  $(x_0,y_0),(x_1,y_1),\ldots,(x_n,y_n)$ , a cardinal polynomial  $L_k(x)$  is a polynomial defined as

$$L_k(x) = \prod_{\substack{i=0\\i\neq k}}^n \frac{(x-x_i)}{(x_k-x_i)} = \frac{(x-x_0)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_n)}{(x_k-x_0)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_n)}.$$

Note:

• 
$$L_k(x_j) = \delta_{kj} = \begin{cases} 0, & j \neq k \\ 1, & j = k \end{cases}$$



# Lagrange Interpolating Polynomial

## Definition (Lagrange Interpolating Polynomial)

Given a set of points  $(x_0,y_0),(x_1,y_1),\dots,(x_n,y_n)$ , Lagrange polynomial is a polynomial of degree n defined as

$$p(x) = \sum_{i=0}^{k} y_k L_k(x)$$

#### Note:

• On the nodes,  $p(x_k) = y_k = f(x_k)$ , ie p(x) passes through all nodes.



# Lagrange Interpolating Polynomia (Example)

### Example

Given the following set of data

| x    | 1 | 3 | 4 |
|------|---|---|---|
| f(x) | 2 | 5 | 8 |

Find the Lagrange polynomial and estimate f(2.5).

#### **ANSWER:**

$$L_0(x) = \frac{(x-3)(x-4)}{(1-3)(1-4)} = \frac{1}{6}(x-3)(x-4),$$

$$L_1(x) = \frac{(x-4)(x-1)}{(3-4)(3-1)} = -\frac{1}{2}(x-4)(x-1),$$

$$L_2(x) = \frac{(x-1)(x-3)}{(4-1)(4-3)} = \frac{1}{3}(x-1)(x-3)$$

$$p(x) = \frac{2}{6}(x-3)(x-4) - \frac{5}{2}(x-4)(x-1) + \frac{8}{3}(x-1)(x-4),$$

$$p(2.5) = 3.8750.$$

# Error Formula for Lagrange Polynomial

#### **Theorem**

Suppose  $\{x_i\}_{i=0}^n$  are distinct points in the interval [a,b] and  $f \in \mathcal{C}^{n+1}[a,b]$ . Then, for each x in [a,b], a number  $\xi(x)$  between  $x_0,x_1,\ldots,x_n$ , and hence [a,b], exits with

$$f(x) = p(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\dots(x-x_n)$$

where p(x) is the Lagrange interpolating polynomial.

Note: There are cases where a function is not very well approximated by a highorder polynomial then a highorder polynomial is a bad choice to use for approximation.

### Theorem (Upper Bound Lemma)

Suppose that  $x_i = a + ih$  for i = 0, 1, ..., n and that h = (b - a)/n. Then for any  $x \in [a, b]$ 

$$\prod_{i=0}^{n} |x - x_i| \le \frac{1}{4} h^{n+1} n!$$

# Error Formula for Lagrange Polynomial

#### **Theorem**

Let f be a function such that  $f^{(n+1)}$  is continuous on [a,b] and satisfies  $|f^{(n+1)}(x)| \leq M$ . Let p be the polynomial of degree  $\leq n$  that interpolates f at n+1 equally spaced nodes in [a,b], including the endpoints. Then on [a,b]

$$|f(x) - p(x)| \le \frac{1}{4(n+1)} M h^{n+1}$$

where h = (b - a)/n is the spacing between nodes.

### Example

Given the data (0,1),(1,2), and (2,4) are generated from  $f(x)=2^x$ . Find the maximum error when the Lagrange polynomial that passes through all the points are used to estimate f(1.5).



- Introduction
- Interpolating Polynomials
  - Existence and Uniqueness of Interpolating Polynomial
  - Lagrange Interpolating Polynomial
  - Divided Difference & Newton Interpolating Polynomials
- Splines



#### Divided Difference

Recall the Newton polynomial that interpolates the n+1 distinct nodes,  $x_0, x_1, \ldots, x_n$ , with respect to a function f:

$$p(x) = x_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \dots + c_n(x - x_0)(x - x_1) \dots (x - x_{n-1}).$$

The coefficients of Newton polynomial p(x) could be found from the divided differences.

### Definition (Divided Difference)

For an arbitrary function f over  $x_0, x_1, \ldots, x_n$  distinct nodes, we define the divided differences  $f[x_0, \ldots, x_n]$ :

- $f[x_0] = f(x_0)$
- $f[x_0,x_1]=\frac{f(x_0)-f(x_1)}{x_0-x_1}$ , and recursively
- $f[x_0, \dots, x_n] = \frac{f[x_0, \dots, x_{n-1}] f[x_1, \dots, x_n]}{x_0 x_n}$ .





### Newton's Forward Divided Difference

Now, with the definition of divided differences, we can write the Newton's polynomial as

$$p(x) = f[x_0] + \sum_{k=1}^{n} f[x_0, x_1, \dots, x_k](x - x_0)(x - x_1) \dots (x - x_k).$$

### Example

Assume that (1,2),(3,5) and (4,8) sampled from a function f. Compute f[1],f[1,3],f[1,3,4] and, hence, write down the Newton's polynomial.



# Error in Newton Interpolation

#### $\mathsf{Theorem}$

Let p be the Newton interpolation polynomial of degree n that interpolates a function F at a set of n+1 distict points,  $x_0, x_1, \ldots, x_n \in [a, b]$ . If t is a point different from all the  $x_i$ 's then

$$f(x) = p(t) + f[x_0, x_1, \dots, x_n, t] \prod_{i=0}^{n} (t - x_i).$$

#### Example

Given the data (1,0), (e,1), and  $(e^2,2)$  are generated from  $f(x) = \ln x$ . Find the maximum error when the Newton polynomial that passes through all the points are used to estimate f(3).





### Forward Difference and Backward Difference

## Definition (Forward Difference)

Let f be an arbitrary function and h be a postive real number. The Forward Difference Operator,  $\Delta$  is defined as :

- $\Delta^0 f(x) = f(x)$
- $\Delta^1 f(x) = f(x+h) f(x)$

### Definition (Backward Difference)

Let f be an arbitrary function and h be a postive real number. The Backward Difference Operator,  $\nabla$  is defined as :

- $\bullet \nabla^0 f(x) = f(x)$
- $\nabla^1 f(x) = f(x) f(x-h)$





# Newton's Forward/Bacward Difference Formula

Let  $x_0, < x_1 < \cdots < x_n$  are arranged in an increasing order with  $h = x_{i+1} - x_i$  for  $i = 0, \dots, n-1$ , we have

$$f[x_0, x_1, \dots, x_k] = \frac{1}{k!h^k} \Delta^k f(x_0)$$

and

$$f[x_n, x_{n-1}, \dots, x_{n-k}] = \frac{1}{k!h^k} \nabla^k f(x_0)$$

## Definition (Newton Forward Difference Formula)

$$p(x) = f[x_0] + \sum_{k=1}^{n} {s \choose k} \Delta^k f[x_0], \quad s = (x - x_0)/h.$$

### Definition (Newton Backward Difference Formula)

$$p(x) = f[x_n] + \sum_{k=1}^{n} (-1)^k {\binom{-s}{k}} \nabla^k f[x_0], \quad s = (x - x_n)/h.$$

# Newton Forward/Backward Difference Formula (Example)

#### Example

Find the Newton Forward and Backward polynomials for the following set of data. (-2,-0.99532), (-1,-0.84270), (0,0), (1,0.84270), (2,0.99532).

| h = 1 | 1.       |            |              |              |              |
|-------|----------|------------|--------------|--------------|--------------|
| x     | f(x)     | $\Delta f$ | $\Delta^2 f$ | $\Delta^3 f$ | $\Delta^4 f$ |
| -2    | -0.99532 |            |              |              |              |
|       |          | 0.15262    |              |              |              |
| -1    | -0.84270 |            | 0.69008      |              |              |
|       |          | 0.84270    |              | -0.69008     |              |
| 0     | 0        |            | 0            |              | <u>0</u>     |
|       |          | 0.84270    |              | -0.69008     |              |
| 1     | 0.84270  |            | -0.69008     |              |              |
|       |          | 0.15262    |              |              |              |
| 2     | 0.99532  |            |              |              |              |

- Forward Polynomial  $p(x) = -0.99532 + \frac{0.15262}{1!1^1}(x+2) + \frac{0.69008}{2!1^2}(x+2)(x+1) \frac{0.69008}{3!1^3}(x+2)(x+1)x.$
- Backward Polynomial  $p(x) = 0.99532 + \frac{0.15262}{1!1^2}(x-2) \frac{0.69008}{2!1^2}(x-2)(x-1) \frac{0.69008}{3!1^3}(x-2)(x-1)x.$

- Introduction
- 2 Interpolating Polynomials
  - Existence and Uniqueness of Interpolating Polynomial
  - Lagrange Interpolating Polynomial
  - Divided Difference & Newton Interpolating Polynomials
- Splines



24 / 29



# Spline interpolation

### Definition (Spline function)

Let the interval [a,b] be composed of n ordered disjoint subintervals  $[x_k,x_{k+1}]$ with  $a = x_0 < x_1 < \cdots < x_n = b$ . A spline function

$$S(x) = \begin{cases} S_0(x), & x_0 \le x \le x_1 \\ S_1(x), & x_1 \le x \le x_2 \\ \vdots \\ S_{n-1}(x), & x_{n-1} \le x \le x_n \end{cases}$$

is a function consists of piecewise-polynomials  $S_k(x), k = 0, 1, \dots, n-1$  joined together over all the subintervals with certain smoothness conditions.

- The order of the spline is the highest order of the polynomials  $S_k(x)$ .
- If all the subintervals are of same length, the spline is said to be uniform.
- Commonly used splines are: natural cubic spline, B-spline and Bézier spline.
- Splines are widely used in interpolation and computer graphics.



# Smoothness Conditions of Splines

## Definition (Continuity)

A function f is continuous at some point s of its domain if the limit  $\lim_{x\to s} f(x) = f(s)$ . In particular, for real function  $\lim_{x\to s^+} f(x) = \lim_{x\to s^-} f(x) = f(s)$ .

Usually the smoothness conditions of splines are conditions that:

- S is continuous in [a, b].
- Thus, for an interior nodes  $x_k$ , the connecting piecewise polynomial must be continuous,  $S_k(x_k) = S_{k+1}(x_k)$ .
- ullet In additions, to ensure the spline of degree m is smooth, the derivatives of the spline  $S', S'', \ldots, S^{(m-1)}$  are all continuous functions, except spline of degree 1.





# Spline of Degree 1 and Quadratic Spline

### Example

Find (i) the spline of degree 1, and (ii) quadratic spline with zero derivatives at end points for the following points: (1,2), (3,5), (4,8). Use the splines to estimate the value of y when x = 1.5.

#### ANSWER:

$$\bullet S_k(x) = y_k + m_k(x - x_k)$$

• 
$$S(x) = \begin{cases} 2 + \frac{3}{2}(x-1), & x \in [1,3] \\ 2 + \frac{3}{2}(x-1), & x \in [0,3] \end{cases}$$

• 
$$S(1.5) = S_0(1.5) = 2.75$$

• 
$$Q_k(x) = a_k + b_k(x - x_k) + c_k(x - x_k)^2$$

• 
$$S(x) = \begin{cases} 2 + \frac{3}{2}(x-1), & x \in [1,3] \\ 5 + 3(x-3), & x \in [3,4] \end{cases}$$
 •  $Q(x) = \begin{cases} 2 + \frac{3}{4}(x-1)^2, & x \in [1,3] \\ 5 + 3(x-3), & x \in [3,4] \end{cases}$ 

• 
$$Q(1.5) = Q_0(1.5) = 2.25$$



# Natural Cubic Spline

- Natural cublic spline is a spline function of degree 3 with the smoothness conditions:
  - For all interior nodes  $1 \le k \le n-1$ ,  $S_k(x_k) = S_{k+1}(x_k)$ ,  $S'_k(x_k) = S'_{k+1}(x_k)$ and  $S_k''(x_k) = S_{k+1}''(x_k)$ .
  - For the boundary nodes,  $S_0''(x_0) = S_{n-1}''(x_n) = 0$ .
- Note that there are all together 4n coefficients in the cubic spline.
- The interpolation at the nodes gives 2n constraints:  $S_k(x_k) = y_k$  and  $S_k(x_{k+1}) = y_{k+1}$  for  $k \le n-1$ .
- The continuity conditions for the derivative of spline at the interior points on S' and S'' provides 2(n-1) constraints
- The remaining two constraints are choosen such that  $S''(x_0) = S''(x_n) = 0$ .

#### Example

Given the data points

(-2, -0.99532), (-1, -0.84270), (0, 0), (1, 0.84270), (2, 0.99532), plot the natural cubic spline that passes through these points.

# THE END

