
Numerical Methods - Interpolation & Splines

Y. K. Goh

Universiti Tunku Abdul Rahman

2013

Y. K. Goh (UTAR) Numerical Methods - Interpolation & Splines 2013 1 / 29



Outline

1 Introduction

2 Interpolating Polynomials
Existence and Uniqueness of Interpolating Polynomial
Lagrange Interpolating Polynomial
Divided Difference & Newton Interpolating Polynomials

3 Splines

Y. K. Goh (UTAR) Numerical Methods - Interpolation & Splines 2013 2 / 29



Introduction

The Problem : Given a set of data

x x0 x1 . . . xn
y y0 y1 . . . yn

We can have three different scenario to ask questions:

Can we reproduce the points exactly by a simple function p? – Interpolation.

Assume the points are generated from complicated (usually means
computationally expensive) function f , can we find a simpler function g to
reproduce reasonable (usually means within the full machine precision)
approximation to f? – Interpolation.

Assume points contains errors, can we reproduce the points approximately
by a simple function, ŷ = ŷ(x)? – Curve fitting.

Depending on the strategies to treat the problem we can:

construct interpolating polynomial of degree m, pm.
construct spline of degree m, S.
construct the least square fit to the curve.

We will cover only interpolating polynomials and splines.

Y. K. Goh (UTAR) Numerical Methods - Interpolation & Splines 2013 3 / 29



Outline

1 Introduction

2 Interpolating Polynomials
Existence and Uniqueness of Interpolating Polynomial
Lagrange Interpolating Polynomial
Divided Difference & Newton Interpolating Polynomials

3 Splines

Y. K. Goh (UTAR) Numerical Methods - Interpolation & Splines 2013 4 / 29



Interpolation

The Problem : Given a set of data

x x0 x1 . . . xn
y y0 y1 . . . yn

Interpolation is to find a function f such that reproduces the given data
points exactly, ie f(xi) = yi, for x0 ≤ x ≤ xn.

The given data points (xi, yi) are called nodes.

There is no other information in between, xi < x < xi+1, we let f be the
exact function (which is unknown to us) that generates the data.

In most problem, we want a simple function, usually a polynomial, p(x) to
approximate f (Weierstraß theorem).

The main reason for using polynomial in interpolation is that the derivative
and integration are easy to determine.

Other commonly used classes of interpolation functions are rational functions
and trigonometric functions (Fourier series).
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Weierstraß Theorem

Theorem (Weierstraß Approximation Theorem)

Suppose f is defined and continuous on [a, b]. For each ε > 0, there exists a
polynomial p(x) such that

|f(x)− p(x)| < ε, for all x ∈ [a, b].

Figure: Illustration of Weierstraß Theorem.
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Existence and Uniqueness

Theorem (Existence and Uniqueness)

Let {xi}ni=0 be (n+ 1) distinct points in [a, b]. Let {yi}ni=0 be any set of real
numbers, then there exists a unique polynomial of degree n, p(x) ∈ Pn, such that
p(xi) = yi,∀i ∈ [0, n].

Existence: Proof by construction of p ∈ Pn by Newton algorithm.

Uniqueness: Proof by contradiction.

Implication: Suppose we have n+ 1 points, the theorem tell us there is one
and only one polynomial of degree n that fit all the data points.
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Newton’s Algorithm

We will construct a polynomial p that passes through all the n+ 1 points:
1 For n = 0, we choose p0(x) = y0.
2 For n ≥ 1, we construct the polynomial recursively with

pk(x) = pk−1(x) + c(x− x0)(x− x1) . . . (x− xk−1)

where the constant c is determined from the condition pk(xk) = yk.

Example

Construct the Newton polynomial of degree ≤ 2 that interpolates the points
(1, 2), (3, 5), (4, 8).
ANSWER :

First point (1, 2), p0(x) = 2.

First two points: p1(x) = p0(x) + c1(x− 1). Since p1(3) = 5, we get
2 + 2c1 = 5 =⇒ c1 = 3/2, ie. p1(x) = 2 + 3

2 (x− 1).

Similarly, p2(x) = p1(x) + c2(x− 1)(x− 3). Since p2(4) = 8, we have
8 = 2 + 3

2 (3) + c2(3)(1) =⇒ c2 = 1
2 , ie.

p2(x) = 2 + 3
2 (x− 1) + 1

2 (x− 1)(x− 3).
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Uniqueness of Interpolating Polynomial

The proof of the uniqueness of interpolating polynomial of degree n utilised the
Fundamental Theorem of Algebra.

Theorem (Fundamental Theorem of Algebra)

A polynomial p(x) = a0 + a1x+ · · ·+ akx
k of degree k cannot have more than k

roots unless p(x) ≡ 0.

Let p be the Newton polynomial of degree n that passes through the n+ 1
distinct points.

Let q be another distinct polynomial of degree n that also passes through the
same n+ 1 points.

Let r(x) = q(x)− p(x), and which is also a polynomial of degree at most n.

Since at the nodes q(xi) = p(xi), 0 ≤ i ≤ n, thus there are at least n+ 1
points where r(x) is zero. From Fundamental Theorem of Algebra, this can
only happens when r(x) ≡ 0, ie. q(x) ≡ p(x) which contradict with the
assertion that q(x) is different from p(x).
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Cardinal Polynomial

Definition (Cardinal Polynomial)

Given a set of points (x0, y0), (x1, y1), . . . , (xn, yn), a cardinal polynomial Lk(x)
is a polynomial defined as

Lk(x) =

n∏
i=0
i6=k

(x− xi)
(xk − xi)

=
(x− x0) . . . (x− xk−1)(x− xk+1) . . . (x− xn)

(xk − x0) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xn)
.

Note:

Lk(xj) = δkj =

{
0, j 6= k
1, j = k
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Lagrange Interpolating Polynomial

Definition (Lagrange Interpolating Polynomial)

Given a set of points (x0, y0), (x1, y1), . . . , (xn, yn), Lagrange polynomial is a
polynomial of degree n defined as

p(x) =

k∑
i=0

ykLk(x)

Note:

On the nodes, p(xk) = yk = f(xk), ie p(x) passes through all nodes.
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Lagrange Interpolating Polynomia (Example)

Example

Given the following set of data

x 1 3 4
f(x) 2 5 8

Find the Lagrange polynomial and estimate f(2.5).
ANSWER:

L0(x) =
(x− 3)(x− 4)

(1− 3)(1− 4)
=

1

6
(x− 3)(x− 4),

L1(x) =
(x− 4)(x− 1)

(3− 4)(3− 1)
= −1

2
(x− 4)(x− 1),

L2(x) =
(x− 1)(x− 3)

(4− 1)(4− 3)
=

1

3
(x− 1)(x− 3)

p(x) =
2

6
(x− 3)(x− 4)− 5

2
(x− 4)(x− 1) +

8

3
(x− 1)(x− 4),

p(2.5) = 3.8750.
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Error Formula for Lagrange Polynomial

Theorem

Suppose {xi}ni=0 are distinct points in the interval [a, b] and f ∈ Cn+1[a, b]. Then,
for each x in [a, b], a number ξ(x) between x0, x1, . . . , xn, and hence [a, b], exits
with

f(x) = p(x) +
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)(x− x1) . . . (x− xn)

where p(x) is the Lagrange interpolating polynomial.

Note: There are cases where a function is not very well approximated by a
highorder polynomial then a highorder polynomial is a bad choice to use for
approximation.

Theorem (Upper Bound Lemma)

Suppose that xi = a+ ih for i = 0, 1, . . . , n and that h = (b− a)/n. Then for
any x ∈ [a, b]

n∏
i=0

|x− xi| ≤
1

4
hn+1n!
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Error Formula for Lagrange Polynomial

Theorem

Let f be a function such that f (n+1) is continuous on [a, b] and satisfies
|f (n+1)(x)| ≤M . Let p be the polynomial of degree ≤ n that interpolates f at
n+ 1 equally spaced nodes in [a, b], including the endpoints. Then on [a, b]

|f(x)− p(x)| ≤ 1

4(n+ 1)
Mhn+1

where h = (b− a)/n is the spacing between nodes.

Example

Given the data (0, 1), (1, 2), and (2, 4) are generated from f(x) = 2x. Find the
maximum error when the Lagrange polynomial that passes through all the points
are used to estimate f(1.5).
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Divided Difference

Recall the Newton polynomial that interpolates the n+ 1 distinct nodes,
x0, x1, . . . , xn, with respect to a function f :

p(x) = x0+c1(x−x0)+c2(x−x0)(x−x1)+· · ·+cn(x−x0)(x−x1) . . . (x−xn−1).

The coefficients of Newton polynomial p(x) could be found from the divided
differences.

Definition (Divided Difference)

For an arbitrary function f over x0, x1, . . . , xn distinct nodes, we define the
divided diferences f [x0, . . . , xn]:

f [x0] = f(x0)

f [x0, x1] =
f(x0)− f(x1)

x0 − x1
, and recursively

f [x0, . . . , xn] =
f [x0, . . . , xn−1]− f [x1, . . . , xn]

x0 − xn
.
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Newton’s Forward Divided Difference

Now, with the definition of divided differences, we can write the Newton’s
polynomial as

p(x) = f [x0] +

n∑
k=1

f [x0, x1, . . . , xk](x− x0)(x− x1) . . . (x− xk).

Example

Assume that (1, 2), (3, 5) and (4, 8) sampled from a function f . Compute
f [1], f [1, 3], f [1, 3, 4] and, hence, write down the Newton’s polynomial.
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Error in Newton Interpolation

Theorem
Let p be the Newton interpolation polynomial of degree n that interpolates a
function F at a set of n+ 1 distict points, x0, x1, . . . , xn ∈ [a, b]. If t is a point
different from all the xi’s then

f(x) = p(t) + f [x0, x1, . . . , xn, t]

n∏
i=0

(t− xi).

Example

Given the data (1, 0), (e, 1), and (e2, 2) are generated from f(x) = lnx. Find the
maximum error when the Newton polynomial that passes through all the points
are used to estimate f(3).
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Forward Difference and Backward Difference

Definition (Forward Difference)

Let f be an arbitrary function and h be a postive real number. The Forward
Difference Operator, ∆ is defined as :

∆0f(x) = f(x)

∆1f(x) = f(x+ h)− f(x)

∆kf(x) = ∆k−1f(x+ h)−∆k−1f(x).

Definition (Backward Difference)

Let f be an arbitrary function and h be a postive real number. The Backward
Difference Operator, ∇ is defined as :

∇0f(x) = f(x)

∇1f(x) = f(x)− f(x− h)

∇kf(x) = ∇k−1f(x)−∇k−1f(x− h).
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Newton’s Forward/Bacward Difference Formula

Let x0, < x1 < · · · < xn are arranged in an increasing order with h = xi+1 − xi
for i = 0, . . . , n− 1, we have

f [x0, x1, . . . , xk] =
1

k!hk
∆kf(x0)

and

f [xn, xn−1, . . . , xn−k] =
1

k!hk
∇kf(x0)

Definition (Newton Forward Difference Formula)

p(x) = f [x0] +

n∑
k=1

(
s
k

)
∆kf [x0], s = (x− x0)/h.

Definition (Newton Backward Difference Formula)

p(x) = f [xn] +
n∑

k=1

(−1)k
(
−s
k

)
∇kf [x0], s = (x− xn)/h.
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Newton Forward/Backward Difference Formula (Example)

Example

Find the Newton Forward and Backward polynomials for the following set of data.
(−2,−0.99532), (−1,−0.84270), (0, 0), (1, 0.84270), (2, 0.99532).
h = 1.
x f(x) ∆f ∆2f ∆3f ∆4f

-2 -0.99532
0.15262

-1 -0.84270 0.69008
0.84270 -0.69008

0 0 0 0
0.84270 -0.69008

1 0.84270 -0.69008
0.15262

2 0.99532

Forward Polynomial
p(x) = −0.99532+ 0.15262

1!11 (x+2)+ 0.69008
2!12 (x+2)(x+1)− 0.69008

3!13 (x+2)(x+1)x.

Backward Polynomial
p(x) = 0.99532+ 0.15262

1!11 (x−2)− 0.69008
2!12 (x−2)(x−1)− 0.69008

3!13 (x−2)(x−1)x.
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Spline interpolation

Definition (Spline function)

Let the interval [a, b] be composed of n ordered disjoint subintervals [xk, xk+1]
with a = x0 < x1 < · · · < xn = b. A spline function

S(x) =


S0(x), x0 ≤ x ≤ x1
S1(x), x1 ≤ x ≤ x2
...
Sn−1(x), xn−1 ≤ x ≤ xn

is a function consists of piecewise-polynomials Sk(x), k = 0, 1, . . . , n− 1 joined
together over all the subintervals with certain smoothness conditions.

The order of the spline is the highest order of the polynomials Sk(x).

If all the subintervals are of same length, the spline is said to be uniform.

Commonly used splines are: natural cubic spline, B-spline and Bézier spline.

Splines are widely used in interpolation and computer graphics.
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Smoothness Conditions of Splines

Definition (Continuity)

A function f is continuous at some point s of its domain if the limit
lim
x→s

f(x) = f(s). In particular, for real function lim
x→s+

f(x) = lim
x→s−

f(x) = f(s)..

Usually the smoothness conditions of splines are conditions that:

S is continuous in [a, b].

Thus, for an interior nodes xk, the connecting piecewise polynomial must be
continuous, Sk(xk) = Sk+1(xk).

In additions, to ensure the spline of degree m is smooth, the derivatives of
the spline S′, S′′, . . . , S(m−1) are all continuous functions, except spline of
degree 1.
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Spline of Degree 1 and Quadratic Spline

Example

Find (i) the spline of degree 1, and (ii) quadratic spline with zero derivatives at
end points for the following points: (1,2), (3,5), (4,8). Use the splines to estimate
the value of y when x = 1.5.
ANSWER:

Sk(x) = yk +mk(x− xk)

S(x) =

{
2 + 3

2 (x− 1), x ∈ [1, 3]
5 + 3(x− 3), x ∈ [3, 4]

S(1.5) = S0(1.5) = 2.75

Qk(x) = ak + bk(x− xk) + ck(x− xk)2

Q(x) =

{
2 + 3

4
(x− 1)2, x ∈ [1, 3]

5 + 3(x− 3), x ∈ [3, 4]

Q(1.5) = Q0(1.5) = 2.25
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Natural Cubic Spline

Natural cublic spline is a spline function of degree 3 with the smoothness
conditions:

For all interior nodes 1 ≤ k ≤ n− 1, Sk(xk) = Sk+1(xk), S
′
k(xk) = S′k+1(xk)

and S′′k (xk) = S′′k+1(xk).
For the boundary nodes, S′′0 (x0) = S′′n−1(xn) = 0.

Note that there are all together 4n coefficients in the cubic spline.

The interpolation at the nodes gives 2n constraints: Sk(xk) = yk and
Sk(xk+1) = yk+1 for k ≤ n− 1.

The continuity conditions for the derivative of spline at the interior points on
S′ and S′′ provides 2(n− 1) constraints

The remaining two constraints are choosen such that S′′(x0) = S′′(xn) = 0.

Example

Given the data points
(−2,−0.99532), (−1,−0.84270), (0, 0), (1, 0.84270), (2, 0.99532), plot the natural
cubic spline that passes through these points.
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THE END
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