UECM3033 Numerical Methods

Tutorial: Interpolation

(Jan 2013)

1. Given the following data:

x	- 0.75	-0.5	-0.25	0
f(x)	-0.07181250	-0.02475000	0.33493750	1.10100000

- a) Write down the Lagrange interpolating polynomial and estimate f(-1/3).
- b) Use Newton's forward difference formula to construct interpolating polynomial and approximate the value of f(-1/3).
- c) Use Newton's backward difference formula to construct interpolating polynomial and approximate the value of f(-1/3).

2. Given the following data:

.	x	0.6	0.7	0.8	1.0
•	f(x)	-0.17694460	0.01375227	0.22363362	0.65809197

- a) Write down the Lagrange interpolating polynomial and estimate f(0.9).
- b) Use Newton's forward difference formula to construct interpolating polynomial and approximate the value of f(0.9).
- c) Use Newton's backward difference formula to construct interpolating polynomial and approximate the value of f(0.9).
- 3. For the given functions f(x), let $x_0 = 0, x_1 = 0.3, x_2 = 0.6, x_3 = 0.9$. Construct the Lagrange interpolating polynomials of degree at most 3 to (i) approximate f(0.45), (ii) find the maximum error bound, and (iii) find the actual error.
 - a) $f(x) = \cos x$
 - b) $f(x) = \ln(x+1)$
 - c) $f(x) = \sqrt{1+x}$
- 4. Consider the knots A(0,0), B(1,1), C(6,1) and D(5,2) over the partition 0 < 1 < 5 < 6.
 - a) Find a spline of degree 1 that interpolates the knots.
 - b) Find a spline of degree 2 that interpolates the knots, and zero derivative at point A.
 - c) Find a cubic spline that interpolates the first two knots, given the tangent vectors (i.e. the derivative of the spline) at knots A and B are 0 and $\frac{1}{4}$.
- 5. A natural cubic spline S on [0,2] is definined by:

$$S(x) = \begin{cases} S_0(x) = 1 + 2x - x^3, & \text{if } 0 \le x < 1, \\ S_1(x) = a + b(x - 1) + c(x - 1)^2 + d(x - 1)^3, & \text{if } 1 \le x \le 2. \end{cases}$$

Find a, b, c and d.

6. Consider the table of points below

	\boldsymbol{x}	0	0.25	0.50	0.75	1.0
v:	y	1	0.70711	0	-0.70711	-1

- a) Construct a natural cubic spline that pass through the data.
- b) Construct a Newton's interpolating polynomial that pass through the data.
- c) Given that the data are generated from $f(x) = \cos(\pi x)$, find the relative error for the estimates of f(0.8) from the spline and Newton's polynomial.