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Definite Integral and Numerical Integration

The main focus of the remaining of this chapter is to evaluate the definite

integral I =

∫ b

a

f(x) dx numerically.

Definition (Definite integral)

The definite integral of a function f(x) over the interval [a, b] that partitioned
into a = x0 < x1 < · · · < xn = b is defined as the limit of its Riemann sum:∫ b

a

f(x) dx = lim
∆xi→0

∑
f(zi)∆xi, ∆xi = xi+1 − xi, zi ∈ [xi, xi+1].

Numerical integration or quadrature formulae are all based on adding up the
appropriate combinations of integrands at the partition of points within the
range of integration to achieve the best accuracy for the least number of
function evaluations.

Quadrature is a historical term for computation of a univariate definite
integral.
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Trapezoid Rule

Basic trapezoid rule :∫ b

a

f(x) dx =
h

2
[f(a) + f(b)]− 1

12
h3f ′′(ξ), where h = b− a, ξ ∈ [a, b].

Composite trapezoid rule:∫ b

a

f(x) dx =

n−1∑
i=0

h

2
[f(xi) + f(xi+1)]− 1

12
(b− a)h2f ′′(ξ), where the

interval [a, b] is uniformly partitioned into a = x0 < x1 < · · · < xn = b, ie
xi = a+ ih, i ≥ n and h = (b− a)/n.
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Simpson’s Rule

Basic Simpson’s rule :∫ b

a

f(x) dx =
h

3
[f(x0) + 4f(x1) + f(x2)]− 1

90
h5f (4)(ξ), where

h = (b− a)/2, ξ ∈ [a, b], x0 = a, x1 = a+ h, x2 = b.

Composite Simpson’ rule:∫ b

a

f(x) dx =
h

3

f(x0) + 2

(n/2)−1∑
i=1

f(x2i) + 4

n/2∑
i=1

f(x2i−1) + f(xn)

−
1

180
(b− a)h4f (4)(ξ), where the interval [a, b] is uniformly partitioned into

a = x0 < x1 < · · · < xn = b, h = (b− a)/n and n is even.
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Example: Trapezoid Rule and Simpson’s Rule

Example

Let I =

∫ 2

1

1

x3
dx.

1 Calculate the exact value for I. [ANS: I = 3
8
= 0.37500.]

2 Use the basic trapezoid rule to estimate I and compute the error.
[ANS: h = 1, I ≈ 1

2
[f(1) + f(2)] = 0.56250. Error = 0.18750.]

3 Use the composite trapezoid rule with 4 partitions to estimate I and compute
the error.
[ANS: h = 0.25, I ≈ 0.25

2
[f(1) + 2f(1.25) + 2f(1.5) + 2f(1.75) + f(2)] = 0.38935.

Error = 0.01434.]

4 Use the basic Simpson’s rule with two partition to estimate I and compute
the error.
[ANS: h = 0.5, I ≈ 0.5

3
[f(1) + 4f(1.5) + f(2)] = 0.38503. Error = 0.01003]

5 Use the composite Simpson’s rule with 4 partitions to estimate I and
compute the error.
[ANS: h = 0.25, I ≈ 0.25

3
[f(1) + 4f(1.25) + 2f(1.5) + 4f(1.75) + f(2)] = 0.37600.

Error = 0.00100.]
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Example: Trapezoid Rule and Simpson’s Rule

Example

How many subintervals are needed to approximate

∫ 2

1

1

x3
dx with error not exceed

10−5 by using a (i) composite trapezoid rule, and (ii) composite Simpson’s rule?
ANSWER:

Composite trapezoid rule:

The error formula : − b−a
12
h2f ′′(ξ)

f ′′(x) = 12
x5 , for ξ ∈ [1, 2], |f ′′(ξ)| ≤ 12.

Thus, the maximum error will not greater than h2.
To have error less than 10−5, h2 ≤ 10−5, or h ≤ 0.003162.
h = (b− a)/n ≤ 0.003162 implies n ≥ 316.23, ie 317 or more partitions will
certainly produce the desirable accuracy.

Composite Simpson’s rule:

The error formula : − b−a
180

h4f (4)(ξ)

f (4)(x) = 360
x7 , for ξ ∈ [1, 2], |f (4)(ξ)| ≤ 360.

Thus, the maximum error will not greater than 2h4.
2h4 = 2/n4 ≤ 10−5 implies n ≥ 21.147, ie at most 22 partitions needed.
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Newton-Cotês Rules (Closed)

The Newton-Cotês quadrature formulas are obtained by approximating the
f(x) by interpolating polynomials. Let f0 = f(x0), f1 = f(x1) and so on.

Trapezoid Rule: ∫ x1

x0

f(x) dx =
1

2
h[f0 + f1]− 1

12
h3f ′′(ξ)

Simpson’s 1
3 Rule:∫ x2

x0

f(x) dx =
1

3
h[f0 + 4f1 + f2]− 1

90
h5f (4)(ξ)

Simpson’s 3
8 Rule:∫ x3

x0

f(x) dx =
3

8
h[f0 + 3f1 + 3f2 + f3]− 3

80
h5f (4)(ξ)

Boole’s Rule:∫ x4

x0

f(x) dx =
2

45
h[7f0 + 32f1 + 12f2 + 32f3 + 7f4]− 8

945
h7f (6)(ξ)
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Newton-Cotês Rules (Opened)

The quadrature rules are closed when the values of f(x) at the end points
are involve in the integration. Otherwise they are opened.

Midpoint Rule ∫ x2

x0

f(x) dx = 2hf1 +
1

24
h3f ′′(ξ)

Two-Point Newton-Cotês Open Rule∫ x3

x0

f(x) dx =
3

2
h[f1 + f2] +

1

4
h3f ′′(ξ)

Three-Point Newton-Cotês Open Rule∫ x4

x0

f(x) dx =
4

3
h[2f1 − f2 + 2f3] +

28

90
h5f (4)(ξ)

Four-Point Newton-Cotês Open Rule∫ x5

x0

f(x) dx =
5

24
h[11f1 + f2 + f3 + 11f4] +

95

144
h5f (4)(ξ)
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Romberg Integration

Consider the composite trapezoid rule

I =

∫ b

a

f(x) dx =

n−1∑
i=0

h

2
[f(xi) + f(xi+1)]− 1

12
(b− a)h2f ′′(ξ)

Alternatively, the trapezoid rule could be writen in a Euler-Maclaurin form of

I =

∫ b

a

f(x) dx =

n−1∑
i=0

h

2
[f(xi) + f(xi+1)] + a2h

2 + a4h
4 + a6h

6 + . . . , or

I =

∫ b

a

f(x) dx = R(0)(h) + a2h
2 + a4h

4 + a6h
6 + . . . .

Apply the Richardson’s extrapolation by subdivide the interval into half and
eliminate a2, we get I = [ 4

3R
(0)(h/2)− 1

3R
(0)(h)] + a4h

4/4 + . . . .

Now R(1)(h) = 4
3R

(0)(h/2)− 1
3R

(0)(h) is a better approximation to I with
error of the order O(h4).

We could continue to eliminate the error terms of O(h4), O(h6), . . . , to get
R(2)(h) = 16

15R
(1)(h/2)− 1

15R
(1)(h), R(3)(h) = 64

63R
(2)(h/2)− 1

63R
(2)(h),

and so on.
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Romberg Integration

Define Rn,0 = R(0)(h/2n) and use the Richardson’s formula

Rn,m = Rn,m−1 +
1

4m − 1
(Rn,m−1 −Rn−1,m−1),

then the previous approximation could be summarised as:

R(0)(h) =

n−1∑
i=0

h

2
[f(xi) + f(xi+1)] = R0,0 =

n−1∑
i=0

h

2
[f(xi) + f(xi+1)]

R(1)(h) =
4

3
R(0)(h/2)− 1

3
R(0)(h) =⇒ R1,1 = R1,0 +

1

3
[R1,0 −R0,0]

R(2)(h) =
16

15
R(1)(h/2)− 1

15
R(1)(h) =⇒ R2,2 = R2,1 +

1

15
[R2,1 −R1,1]

R(3)(h) =
64

63
R(2)(h/2)− 1

63
R(2)(h) =⇒ R3,3 = R3,2 +

1

63
[R3,2 −R2,2]
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Romberg Integration

m O(h2) O(h4) O(h6) O(h2N )
0 R0,0

1 R1,0 R1,1

2 R2,0 R2,1 R2,2

...
...

...
...

. . .

N RN,0 RN,1 RN,2 . . . RN,N
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Gaussian Quadrature

The Newton-Cotês formulas are derived by integrating the interpolating
polynomials over a equally spaced (uniformly distributed) nodes for f(x).

It is not always optimal to use the equally spaced nodes, and if this
restriction is relaxed and with appropriate weighting coefficients, we come to
an approach called Gaussian quadrature.

The idea of Gaussian quadrature is to fixed the number of nodes N , and
select the weight wi and position of the nodes xi, so that

I =

∫ b

a

f(x) dx ≈
N∑
i=1

wif(xi)

is best accuracy possible.

For simplicity, we will discuss Gaussian quadrature for I =
∫ 1

−1
f(x) dx and it

is easy to extend to a more general interval [a, b] by change of variable
x′ = a+b

2 + b−a
2 x.
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Two-point Gauss-Legendre Quadrature

The two-point Gauss-Legendre quadrature is of the form

I =

∫ 1

−1

f(x) dx ≈ w1f(x1) + w2f(x2).

Let assume that the two-point quadrature will give exact result for any cubic
polynomial, f(x) = a0 + a1x+ a2x

2 + a3x
3.

We will setup 4 equations to determine the four unknowns w1, w2, x1 and x2.

Since integration is additive, it is suffice to require the quadrature to be exact
for f(x) = 1, x, x2 and x3. Thus,

f(x) = 1 :

∫ 1

−1

1 dx = 2 = w1 + w2

f(x) = x :

∫ 1

−1

x dx = 0 = w1x1 + w2x2

f(x) = x2 :

∫ 1

−1

x2 dx =
2

3
= w1x

2
1 + w2x

2
2

f(x) = x3 :

∫ 1

−1

x3 dx = 0 = w1x
3
1 + w2x

3
2
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Gauss-Legendre Quadrature

Solve the system of nonlinear equations, we get w1 = w2 = 1 and
−x1 = x2 = 1√

3
.

Theorem (Two-Point Gauss-Legendre Rule)

If f is continous on [−1, 1], then∫ 1

−1

f(x) dx ≈ G2(f) = f

(
− 1√

3

)
+ f

(
1√
3

)

Example

Evaluate
∫ 1

−1
1

x+2 numerically with two-point Gauss-Legendre rule.
ANS:

Exact solution : ln(3)− ln(1) ≈ 1.09861.

Gauss-Legendre : G2(f) = f
(
− 1√

3

)
+ f

(
1√
3

)
= 1.09091.

Trapezoid rule : 2
2 [f(−1) + f(1)] = 1.33333.

Simpson’s rule : 1
3 [f(−1) + 4f(0) + f(1)] = 1.11111.
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Gauss-Legendre Quadrature Nodes and Weights

A general N -point Gauss-Legendre rule is exact for evaluating integral of
polynomial of degree < 2N − 1:

GN (f) = w1f(x1) + w2f(x2) + · · ·+ wNf(xN ) + EN (f).

The values of the nodes xi and weights wi are given by the following table

N Nodes xi Weight wi Truncation error EN (f)

2 ± 1√
3

1 1
135f

(4)(ξ)

3 ±
√

3
5

5
9

1
15750f

(6)(ξ)

0 8
9

4 ±
√

1
7 (3− 4

√
3
10 ) 1

2 + 1
12

√
10
3

1
3472875f

(8)(ξ)

±
√

1
7 (3 + 4

√
3
10 ) 1

2 −
1
12

√
10
3
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Adaptive Quadrature Methods

In an adaptive scheme, the partition of [a, b] is not pre-detemined.

Instead, [a, b] is subdivided into two subintervals on every iteration and test if
the desirable accuracy is obtained.

Adaptive algorithm procedure for I =

∫ b

a

f(x) dx with accuracy ε:

If basic quadrature rule S(a, b) is less than ε than stop.
Otherwise, subdivide [a, b] into two equal intervals
evaluate quadratures on both intervals
test if each of quadratures is less than ε/2
if yes, than stop; otherwise further subdivide the subinterval again and repeat.

We will illustrate the adaptive scheme based on Simpson’s rule.
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Simpson’s Adaptive Scheme

Write I =

∫ b

a

f(x) dx = S(a, b) + E(a, b), where

S(a, b) = 1
3h[f(a) + 4f(a+ h) + f(b)] and E(a, b) = − 1

90h
5f (4)(ξ0).

First approximation,
I = S(1) + E(1), (1)

where S(1) = S(a, b) and E(1) = E(a, b).

Then half the interval for next approximation:

I = S(2) + E(2), (2)

where S(2) = S(a, a+ h) + S(a+ h, b).

The new error term, E(2) = − 1
90 (h/2)5f (4)(ξ1)− 1

90 (h/2)5f (4)(ξ2).

Assuming f (4)(ξi), i = 0, 1, 2 do not change too much throughout [a, b], then
E(2) = 1

16 [− 1
90h

5f (4)(ξ0)] = 1
16E

(1).

Eq.(1) - Eq.(2) gives, S(2) − S(1) = E(1) − E(2) = 15E(2)

Thus, if |E(2)| = 1
15 |S

(2) − S(1)| < ε then I = 16
15S

(2) − 1
15S

(1) and stop.

Otherwise, split [a, b] into [a, a+ h] and [a+ h, b] and test if both intervals
with accuracy ε/2.
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First Derivative

Formula for numerical derivatives are important in numerical solutions of
boundary value problems.

Often this involves calculating derivatives of a function f that its value is
only known at a few points (x0, f(x0)), . . . , (xn, f(xn)).

Naively, we could use the definition of the derivative

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
of the function f at point x0, and thus a

simple approximation to f ′(x0) is f ′(x0) ≈ f(x0 + h)− f(x0)

h
.

However this obvious approximation suffer from:

round-off error of substracting two quantities that are nearly equal.
truncation error of | − 1

2
hf ′′(ξ)| that will present even if the calculation are

performed with infinite precision.

Note that the naive approximation of f ′(x0) and its truncation error could be
“derived” from the Taylor’s theorem
f(x0 + h) = f(x0) + hf ′(x0) + 1

2h
2f ′′(ξ(x0)).
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First Derivative (Example)

Example

Let f(x) = cosx find f ′(π4 ), with h = 0.1 and 0.01. Calculate the corresponding
absolute errors.
ANSWER :

f ′(
π

4
) ≈

f(π4 + h)− f(π4 )

h
.

For h = 0.1, f ′(
π

4
) ≈ 0.6329813067− 0.7071067812

0.1
= −0.7412547451.

For h = 0.01, f ′(
π

4
) ≈ 0.7000004762− 0.7071067812

0.1
= −0.7106305006.

For h = 0.1 case, absolute errors
= | − 0.7412547451− (− sin(π/4))| = 0.0341.

For h = 0.01 case, absolute errors
= | − 0.7106305006− (− sin(π/4))| = 0.00352.
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First Derivative (Example)

Example

Let f(x) = exp(x) and x0 = 1. The following figure shows the secant lines for
h = 0.25, 0.5, 0.75 and 1.0.

Figure: Several secant lines for y = ex.

Also, MATLAB code : nm05_error.m illustrate the fact that it is not always
smaller h gives better approximation.

Y. K. Goh (UTAR) Numerical Methods - Integration & Differentiation 2013 28 / 35



Formula for First Derivative

Taylor’s series for f(x0 + h) and f(x0 − h) with h > 0:

f(x0 + h) = f(x0) + hf ′(x0) +
1

2!
h2f ′′(x0) +

1

3!
h3f ′′′(x0) + . . .

f(x0 − h) = f(x0)− hf ′(x0) +
1

2!
h2f ′′(x0)− 1

3!
h3f ′′′(x0) + . . .

Definition (Forward difference formula)

Forward difference formula : f ′(x0) =
f(x0 + h)− f(x0)

h
− 1

2
hf ′′(ξ).

Definition (Backward difference formula)

Backward difference formula : f ′(x0) =
f(x0)− f(x0 − h)

h
− 1

2
hf ′′(ξ).

Definition (Central difference formula)

Central difference formula : f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
− 1

6
h2f ′′′(ξ).
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Formula for First Derivatives (Example)

Example

Find f ′(x) for the following data set (x, f(x)) by using the forward / backward /
center difference formula, given that f(x) = tan(x)
ANSWER :

x f(x) f ′(x)
Exact Value Forward Diff. Backward Diff. Center Diff.

2.1 -1.70985 3.9236 3.3602 - -
2.2 -1.37382 2.8874 2.5461 3.3602 2.9532
2.3 -1.11921 2.2526 2.0320 2.5461 2.2890
2.4 -0.91601 1.8391 1.6899 2.0320 1.8610
2.5 -0.74702 1.5580 1.4543 1.6899 1.5721
2.6 -0.60160 1.3619 - 1.4543 -
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Second Derivatives

Definition (Central difference formula)

Central difference formula :

f ′′(x0) =
f(x0 + h)− 2f(x0) + f(x0 − h)

h2
− 1

12
h2f ′′′(ξ).

Example

Let f(x) = cosx, estimate f ′′(π4 ) with h = 0.01 with the center difference
formulat and calculate the corresponding absolute error.
ANSWER :

f ′′(π/4) ≈ f(π/4 + h)− 2f(π/4) + f(π/4− h)

h2
= −0.7071008887.

Absolute error = | − 0.707100888650558 + cos(π/4)| = 5.89× 10−6.
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Richardson’s Extrapolation

From Taylor’s series

f(x+ h) =

∞∑
k=0

hk

k!
f (k)(x)

f(x− h) =

∞∑
k=0

(−1)khk

k!
f (k)(x)

Substracting and rearrange yields

f ′(x) =
1

2h
[f(x+ h)− f(x− h)]− [

1

3!
h2f ′′′(x) +

1

5!
h4f (5)(x) + . . . ]

≡ ϕ(h) + a2h
2 + a4h

4 + . . .

Let L = ϕ(h) + a2h
2 + a4h

4 + . . . and replace h with h
2 , then

L = ϕ(h/2) + a2h
2/4 + a4h

4/16 + . . .
Eliminating a2 and obtain

L =
4

3
ϕ(h/2)− 1

3
ϕ(h)− a4h

4/4 + . . .

which is a better approximation of f ′(x) with error of order O(h4).
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Richardson’s Extrapolation (Cont.)

The Richardson’s method could be applied repeatedly to eliminate a4, a6, . . .
to get higher accuracy.

Let denote D(n, 0) = ϕ(h/2n) (n ≥ 0) which gives the first approximation
to f ′(x).

A generalised Richardson’s formula for approximation of order O(h2(m+1))

D(n,m) = D(n,m− 1) + (4m − 1)−1[D(n,m− 1)−D(n− 1,m− 1)].

Example

Let f(x) = xex. By using the center difference and Richardson’s extrapolation,
find approximation of order O(h2), O(h4), and O(h6) for f ′(2.0) with h = 0.2.
ANSWER :

The approximations required are D(0, 0), D(1, 1), D(2, 2).

D(0, 0) = 22.414160, D(1, 0) = 22.228786, D(2, 0) = 22.182564

D(1, 1) = D(1, 0) + 1
3 [D(1, 0)−D(0, 0)] = 22.166995, D(2, 1) = 22.167157

D(2, 2) = D(2, 1) + 1
15 [D(2, 1)−D(1, 1)] = 22.167168.
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THE END
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