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Initial Value Problems & ODEs

Definition (Ordinary Differential Equation (ODE))

An ordinary differential equation is an equation that involves one or more
derivatives of an univariate function.

@ The solutions for an ODE are differ from each other by a constant.

Definition (Initial Value Problem)

A solution to the initial value problem (IVP)

dy

dt - f(tay), with y(tO) =Y

on an interval [to,b] is a differential function y = ¢(¢) such that ¢ (o) = yo and
¢ (t) = f(t,¢(t)) for all t € [to, b]

@ The solution of IVP is unique.
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Well-posed Problem

Theorem (Well-posed problem)

Suppose that D = {(t,y)|la <t < b and — oo <y < oo} and that f(t,y) is
continuous on D. If f satisfies a Lipschitz condition on D, then the initial value
problem

y(t) = f(t,y), a<t<bd, yla)=yo,

has a unique solution.

Definition (Lipschitz condition)

A function f(t,y) is said to satisfy a Lipschitz condition in the variable y on a set
D C R? if there exist a constant L > 0 such that

|f(t,y1) — f(t,y2)] < Llyr — 2!,

whenever (t,y1) and (¢,y2) are in D. The constant L is called a Lipschitz
constant for f.
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Well-posed Problem

Theorem

Suppose f(t,y) is defined on a convex set D C R%. If there exists a constant
L > 0, such that
of

\5—y(t,y)| <L, forall(ty)eD,

then f satisfies a Lipschitz condition on D in the variable y with Lipschitz
constant L.

| \

Example

Show that there is a unique solution to the initial value problem

y'(t) =1+ tsin(yt), 0<t<2,4(0)=0.
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@ Single Step Methods
@ Euler's Method
@ Taylor Series Method of Order n
o Runge-Kutta Method
o Adaptive Runge-Kutta-Fehlber Method
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@ Single Step Methods
@ Euler's Method
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Euler's Method

@ Euler's method is the simplest numerical method for solving well-posed IVP:
d
D= fty), a<t<b yla)=o
dt
o First partition / discretise the interval into N + 1 equally spaced mesh points:
a=tg <t <ty <---<tny=>b,t; =tg+ih,i <N and h:(b—a)/N.
o Consider the two adjecent mesh points [¢;,t;+1], from the Taylor's series,
2

y(tiv1) = y(ts + h) = y(t;) + hy'(t:) + %y"(& £ € [ti tiga]-

o Write y; as the approximation to the actual solution y(¢;) and substitute
y'(t;) = f(ti,y(t;)), we have the Euler's method iteration rule:

Yier = Yi + hf(ti, vi)-

@ The initial starting point of the Euler's method is given by the initial
condition yp = y(a) = a.
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Euler's Method

@ The local discretisation error €; = |y(t; + h) — y(t;) — hf(ti, y(t:))| is O(h?).
@ However, the global discretisation error E; = |y(t;) — y;| is O(h).

Solve the IVP ¢/ = (¢t — y)/2 with y(0) = 1 over 0 < ¢ < 3 with Euler method.
ANSWER: MATLAB code : nm06_euler_driver.m
(Analytic solution is 3e~*/2 — 2 +t)

Euler method for y's(t-y )2 Diviation from exact solutions
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@ Single Step Methods

@ Taylor Series Method of Order n
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Taylor Series Method of Order n

Suppose f(t,y) is continuous and satisfies a Lipschitz condition in variable y, and
consider the IVP

Yy =f(ty), a<t<b, yla)=o

For the mesh points t;11 = t; + h, the Taylor series method approximate the
solution y(t;+1) with the formula:

d d, .
yi+1:y0+d1h+2—?h2+~-~+gh”, fori=0,1,2,..., N,

where d; =y (t) evaluated at t;.

o Note that the global error for the Taylor series method is O(h™).

Example

Solve the IVP ¢/ = (t — y)/2 with y(0) = 1 over 0 < t < 3 with Taylor series
method of order 2.

ANSWER: MATLAB code : nm06_taylor2.m
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@ Single Step Methods

o Runge-Kutta Method
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Runge-Kutta Method of Order 2

@ The methods tried to imitate the Taylor series method without requiring
analytic differentiation of the ODE.

@ In Euler method: y;+1 = y; + hf(t;,y;), the slope f(¢,y) is evaluated at the
start of the interval ¢;, ie a forward difference scheme.

@ Intuitively, for better accuracy, we could evaluate f(¢,y) at the midpoint by
using the Euler method first to obtain y; /2, then evaluate f(t; 1 2, Yitn/2)
to get a symmetrical scheme.

@ Because of the symmetry, the local error is reduced by an order (in the step
size) and the method is now a second-order method called Runge-Kutta
Method of order 2 (RK2) or the midpoint method.

@ The RK2 algorithm:

ki = hf(ti,vi)
Yit1/2 = Yi+ki/2
ka = hf(tivi/2:Yiv1/2)
Yit1 = Vit ke
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Runge-Kutta Method

@ In general the Runge-Kutta method could be written in the form of

Yir1 = Vi +wiky + wako + w3k + waky . ..
ki = hf(ti,yi)
ky = hf(ti+aih,y; +bik:)
ks = hf(t; +azh,y; + baki + bskz)
ks = hf(t; + agh,y; + baks + bsko + bks)

")

where the constants a; and b; are determined by comparing with the
corresponding order of Taylor series method.

@ For example, the 2nd order Taylor series method gives:

2 3
(tiar) = ylte) + hF b y(80) + o 1 (8)) + 5 7 (€0 w(60):

and we wish to find the corresponding w1, w2, a; and by for kq, ko and
Yir1 = Yi + wikr + wako.
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Runge-Kutta Method

@ From the 2nd order Taylor series method gives:

h2
Yir1 = Yi + hf(ts, ys) + 31“(%%) +0(h?)
h2
=yi +hf(ts,y:) + ?[ft(tiayi) + f(ti, yi) fy (tisyi)] + O(RP).
o Also, we know k; = hf(t;,y;) and expand ko in term of Taylor series
k‘g = hf(tz + alh,yi + b1]€1)
= h[f(ti,ys) + arhfe(ti, yi) + biki fy (ti, )] + O(h®)
= h[f(ti,yi) + arhfe(ti, yi) + bihf(tiyi) fy(ti, yi)] + O(h?)
@ Substituting k1 and kg into y;+1 = y; + wik1 + wako get
Yir1 = yi + h(wy +wa) f(ti, y:) + wah®[as fi(ti, yi) + buf (o, vi) fy (B, 3)]

@ Comparing the coefficients we get:

1 1
w1 +we =1, alllIQ:E, b1w2:§.
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Runge-Kutta Method

@ Note the there are 3 equations for the four unknown wy,ws,a; and by,
therefore we have one degree of freedom in solving the coefficients.

@ Choose w; = 0,wy = 1,a1 = by = % we have the mid-point method:

ki = hf(ti,y:)
ky = hf(t; +h/2,y; + k1/2)
Yit1 = Yi + ko

e It is possible to choose an optimal value for a; such that the error O(h3) is
minimized. The value chosen is a; = % and thus w; = i,wg = %,bl = %:

ki = hf(ti,yi)

2 2
ko = hf(ti + ghayi + gkl)

1 3
Yit1 y+41—|—42
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Runge-Kutta Method of Order 4

@ Similarly, the Runge-Kutta Method of Order 4 (RK4) algorithm:

kv = hf(ti,y)

h kq
ky = hf(tz+§7yz+5)
h ko
ks = hf(tz"’g:yz"'?)
ka = hf(ti+h,y: +ks3)
1
Yit1 = Yi+ é(lﬁ + 2k + 2k3 + kyq)

@ Note that RK2 has global truncation error of O(h?), while RK4 has a global
truncation error of O(h%).

@ RK4 is a common, optimal and reliable numerical integrator, especially if it is
used together with an adaptive step-size control.
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@ Single Step Methods

o Adaptive Runge-Kutta-Fehlber Method
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Adaptive Runge-Kutta-Fehlberg (RKF45) Method

@ The RKF45 algorithm:

ki = hf(ts,y)
1 1
ke = hf(ti + Zhayi + *k‘l)
ks = Rf(tit Syt okt k)
3 = iTg Ui + 32 1 39 2
12 1932 7200, 7296
kao = hf(t+ Shoyit Srgnh = oigrke + g7 k)
439 3680 845
ks = hf(ti+h,yi+ 216k1—8k2+§k3_mk4)
3544 1859 11
ke = hf(ti+ *h,yi k1 + 2ky — 2565k LT
— +§k 1408k L2107, 1y
Vit = Uit 1Mt oses s T qqpa™ T 5"
16 6656 28561 9 2
yirr = Yt gkt skt gaisgh T oM t g5k
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Adaptive Runge-Kutta-Fehlberg (RKF45) Method

@ The RKF45 algorithm gives two estimates for y(t;), ie:

o 4th order estimate : ¢;+1; and
o 5th order estimate : yiy1.

@ The difference between the two estimates gives the local truncation error. ie.
€ = [Ji+1 = Yir1| ~ O(R?).
@ A simple adaptive scheme:
o Choose an acceptable error €.
o Suppse we did a calculation with step size h. and error €., then a new
step-size that will produce error ¢ is ho = hc(eo/ec)1/5. Hence,
o If . < €o, accept the calculation with current step-size h., but change the
next step size to hg.
o If ec > €o, reject y;11 and repeat the calculation with step-size hg.

@ The Matlab command ode45 implement a variant of RK45 with adaptive
step control.
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© Multistep Methods
@ Adams-Bashforth Explicit Methods
@ Adams-Mouton Implicit Methods
@ Predictor-Corrector Methods

Y. K. Goh (UTAR) Numerical Methods - Initial Value Problems for ODEs



Multistep Methods

Multistep methods make use of the information from several previous mesh
points to compute the value at the new mesh point.
Consider 3/ (t) = f(t,y), integrate over [t;,t;+1] and we have:

y(tiv1) = y(t:) +/ " ft,y(t))dt.

ti

As y(t;+1) is unknown, we cannot evaluate the integral explicitly. Instead, we
rely on interpolating the integrand with a polynomial.

For example, let say we know the value of (¢;,y(¢;)) and we are approximating
f(t,y) with interpolating polynomial of degree 0 (ie a horizontal line), then

fty) = f(ti,y(ti) + (¢ =) f'(7i, y(7:)) where 7; € [t tiq1].
Integrating over [t;,t;+1] and let h = ¢, 1 — t;, gives
h2
y(tiv1) = y(ts) + hf(t, y(ts)) + Efl(givy(g))a
Which is the one-step Euler method

Yivr = Yi + hf(ti, vi)-
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© Multistep Methods
@ Adams-Bashforth Explicit Methods
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Adams-Bashforth Explicit Methods

@ Continue along the idea, now we use interpolating polynomial through the
two points (¢;,y(t;)) and (t;—1,y(t;—1)) for f(¢t,y):

) = v+ [ {ftpte) + ¢ -y Lt = Moyl
S 1y |

= y(t:) + g {8f(ti,y(ti)) — f(tima, y(tia))} + %h?’f”’(&,y(&))

@ Two-step Adams-Bashforth method:
h 5
Yit1 = Yi + 5[3f(ti, yi) — f(tic1,yim1)] + Ehgfm(fia y(&))
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Adams-Bashforth Explicit Methods

@ One-step Adams-Bashforth:
h2
Yir1r = Yi + hf(ti,vi) + gf/(fmy(&))
@ Two-step Adams-Bashforth:
h 5
Yit1 =Y + 5[3f(tivyi) = fltic1,9i-1)] + Eh?’fﬁ(fi, y(&i))
@ Three-step Adams-Bashforth:

1};[231"( tisyi) — 16 f(tiz1,yi—1) + 5f (ti—2, yi—2)]

+§h4fm(§i7y(£i))

o Four-step Adams-Bashforth:

Yir1 = Y+

h
Yir1 = Yi+ ﬂ[55f(tiayi) —59f(ti—1,yi—1) + 37f(ti—2,yi—2)

~9f (b3, 1-9)] + 251 6 (6)
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© Multistep Methods

@ Adams-Mouton Implicit Methods
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Adams-Moulton Implicit Methods

o Now we also include (t;41,y(t;+1)) as additional interpolation node, then we
have the Implicit formula.

o For example, use (t;11,y(ti+1)) and (¢, y(¢;))

bt t—tiy1 t—t;
y(tiv1) = yt) +/ {f(ti7y(ti))+ + ftiv1,y(tig1)) ——
t ti —tit1 tiv1 —t;

S ey f
= y(t:)+ g {f(ti,y(ts)) — f(tivr, y(tivr))} — Tlghsfm(fi,y(&))

@ One-step Adams-Moulton implicit method:
h 1
Yit1 = yi + §[f(ti,yi) — ftiv1,yir1)] — Ehgfm(fivy(fi))
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Adams-Moulton Implicit Methods

@ One-step Adams-Moulton:

Yitl = Yi + ﬁ[f(ti-i-layi—i-l) + f(ti yi)] — Tghgf,/(giay(fi))

2
@ Two-step Adams-Moulton:

h 1
Yirr = Vit 15 5f (tig1,Yit1) +8F (ti, yi) — f(tiz1,yi—1)] — ﬂh4f//l(§ia y(&))
@ Three-step Adams-Moulton:
h
Yit1 = Yi+ ﬁ[gf(ti+1vyi+l) +19f(tisyi) — 5f(ti—1,yi-1)

19 15 10 (¢, y(e1))

+f(ti—2,yi—2)] — 720

o Four-step Adams-Moulton:

h
2o (251 f (tign, yiyr) + 646 f (L, y:) — 264f(tim1,yi-1)

Vit = Vit oo
3 6 4(5) )
+106f (ti—2, Yi—2) — 19f (ti—3, yi—3)] — 160h FAICIRTC TR
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© Multistep Methods

@ Predictor-Corrector Methods
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Predictor-Corrector

@ One weakness the Adams-Moulton implicit formula is it not always possible
to algebraically re-arrangethe formula to make y(t;11) explicit.

@ However, combine with Adams-Bashforth explicit formula to form a
predictor-corrector pairs.
@ The simplest example will be the so-called leapfrog algorithm:
o Predictor (1-step AB) : pit1 = yi + hf(ti, yi)
o Corrector (l—step AM) T Yit1l = Yi + %[f(tiJrl,piJrl) + f(ti,yi)]
@ Another commonly used method will be the 4th Order
Adams-Bashforth-Moulton methods:
e Predictor : pit1 =vyi + %[55]2 —59fi—1+37fi—2 — 9fi—3]
o Corrector : yiy1 = yi + 5[9f1-+1 +19f; — 5fi—1 + fi—2], where
firr = f(tit1,pi1)
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@ Convergence and Stability
o Convergence
@ Stability Function
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@ Convergence and Stability
o Convergence
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@ Stability of ODE scheme depends on the nature of IVP.

o Eg, Euler scheme diverges for y' = Ay, y(0) = «, but converges for y' = —\y.

@ For convergent solution curves, the local errors at each step are reduced over
t, and accumulative global error may be less than the sum of the local errors.

dyleltey dyiedt = -y

For an initial value problem: y' = f(t,y), y(0)=«
e if fy > ¢ for some positive §, then the solution curve diverges.

e if fy < —6, then the solution curve converges.
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@ Convergence and Stability

@ Stability Function
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Stability

@ Even if the IVP is convergent, it could still be unstable due to large h.

Example

Consider IVP 3 = (t — y)/2,y(0) = 1. We know that f,(t) = —1/2 for all
t € [0,50], thus the Euler method should be convergent. However, the numerical
solution y(t) by using Euler method for for h = 2.5 is convergent but diverge for

h =5.
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@ Consider a linear (or linearized) ODE: y = —\y, and discretized, say by Euler
method (of course could be other method).

@ Then, we have y;+1 = y; — hAy;.
@ The absolute stability function is defined as

Yi+1
Yi

Q) - |

@ In the case for Euler method, we have Q(hA) = (1 — hA).
o If the amplification factor Q(hA) < 1, then we are guaranteed that the
sequence {y;} will not grow without bound, and hence stable.

@ Assuming that X is real, then for the Euler method to be stable we need
—1<1=MXr<lor0<Ah<2 ieh<2/Xin order for the Euler method to
be stable.
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@ The following figure shows an IVP (y’ = —10y,y(0) = 1) solved by Euler
method with different values of step size h.

@ Note that the numerical solution curves become unstable when
h>2/c=0.10.

dyidt =10y
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© Higher Order ODE
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Higher Order ODE & System of ODEs

@ Higher order ODE can be solved numerically by turning into a system of first
order ODEs.

@ Consider IVP of order n:

y(n) = f(tvyay/7 o 7y(n—1))7 y(o) = a07y/(0) =aq,... 7y(n_1) = Qnp—1.

o Define new variables z1, 2o, ..., 2n: @1 =y, 22 =y, ..., 2n =y ).
@ Now the IVP is equivalent to
¥y = z2, x1(0)=ap
vy = z3, x2(0) =0y
.’L‘fﬂ = f(t7x17x27"'7xn)7 Tn = Qp—1
@ In vector notation: X' = F(¢,X), X(0) = A, where X = [z1,22,. ..
F = [zg,23,..., f]T and A = [ag, 1, ..., 1]
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System of First Order ODEs

@ Solve the system of first order ODEs numerically are very much like solving a
single first order ODEs.

o For example, consider to solve X'(t) = F(t,X), X(0) = A with a
Runge-Kutta method of order 4, we have

o Discretise the time interval [a, ] into n subdivisions with h = (b — a)/n.
o RK4 iteration formula: X;11 = X; + %[kl + 2ks + 2ks + k4], where

ki = hF(tX)

ky = hF(t+%h7X+%k1)
ks = hF(t+%h,X+%k2)
ki = hF(t+h X +ks)
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System of ODEs (Example)

Solve y = —4y, y(0) =0,y'(0) = 2.
ANSWER: MATLAB code : nm06_system.m

H

T
¥ty
dyidt

05

05 b
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System of ODEs (Example)

Example (Lorenz system)

Solve the Lorenz system:

¥ = oly—a)

/

y = z(p—2)—y
Z = wzy—pz

with the values 0 = 3,p = 26.5 and g = 1.
ANSWER: MATLAB code : nm06_lorenz.m
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THE END
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