UECM3033 Numerical Methods

Tutorial: Numerical ODE & Boundary Value Problem

(Jan 2013)

1. Solve the following boundary value problem

$$x''(t) = \frac{2t}{1+t^2}x'(t) - \frac{2}{1+t^2}x(t) + 1, \quad x(0) = 1.25, x(4) = -0.95$$

by Shooting method.

2. Repeat Q1 with

$$x'' = -2x' - 2x + e^{-t}, \quad x(0) = 0.6, x(4) = -0.1.$$

3. The van der Pol equation

$$y'' - \mu(y^2 - 1)y' + y = 0, \quad \mu > 0,$$

governs the flow of current in a vacuum tube with three internal elements. Let $\mu = 1/2, y(0) = 0$, and y(2) = 1. Approximate the solution y(t) by using shooting method with step size h = 0.5.

- 4. Rewrite the equation $y''(x) xy'(x) + 4y(x) = x^2$, y(0) = 0, y(6) = 0 as a system of first order ODEs and construct a MATLAB function file called dy.m which defines the right hand side of the system and which is suitable for use with the ode45 integration routine. Explain then how you could solve this problem using MATLAB.
- 5. The vibrating string equation has the form $y'' + \lambda^2 y = 0$ with λ unknown and subject to: y(0) = 0, y(1) = 0. It has a solution only for certain values of λ known as eigenvalue. Find λ and solve the equation by shooting method. [Hint: let $y_1 = y, y_2 = y', y_3 = \lambda$ and apply the fact that the ODE remains unchanged if we change $y \to ky$, for any k.]
- 6. Solve the following boundary value problem

$$x''(t) = 2x' - x + t^2 - 1, x(0) = 5, x(1) = 10$$

by finite-difference method with step size h = 0.25. Calculate the error at each mesh points, given that the exact solution is $x(t) = t^2 + 4t + 5$.

7. Repeat Q6 with y'' = 4(y-x), y(0) = 0, y(1) = 2, and given the exact solution is $y(t) = e^2(e^4-1)^{-1}(e^{2x}-e^{-2x}) + x$.

1