Electrical Overstress Course

EOS Training Course

Dr. Lim Soo King
Dip Sc (Merit); B Sc (Hons); Dip Mgt (Dist)
M Sc; PhD; MIPM
Associate Professor
Universiti Tunku Abdul Rahman

31 Jul 06.
Objectives of the Course

- Understand the phenomena of EOS.
- Ability to set-up an effective EOS program for the organization.
- To improve the cost, quality, cycle time, and reliability.
- To reduce customer complaint.
- Reduce the wastage due to EOS.
Introduction
Outline of the Course

- Introduction.
- Theory of EOS.
- Characteristics of EOS.
- Miniaturization of device.
- Device structures.
- Causes of EOS.
Outline of the Course

- Failure mechanism of EOS.
- Theory of failure.
- EOS test methodology.
- EOS prevention
- Reference.
- JVC case study.
Introduction

- EOS is defined as electrical overstress.
- Semiconductor devices have a limited ability to sustain electrical overstress.
- The device susceptibility to EOS increases as the device is scaled down to submicron feature size.
- 37% for the IC failures can be attributed to ESD/EOS events.
World Revenue of Semiconductor

Bil $
Electrical Overstress Course

Roadmap of Device

<table>
<thead>
<tr>
<th>Year</th>
<th>99</th>
<th>02</th>
<th>05</th>
<th>08</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel length (µm)</td>
<td>0.18</td>
<td>0.13</td>
<td>0.10</td>
<td>0.07</td>
<td>0.05</td>
<td>0.035</td>
</tr>
<tr>
<td>Equivalent oxide thickness (µm)</td>
<td>1.9 - 2.5</td>
<td>1.5 - 1.9</td>
<td>1.0 - 1.5</td>
<td>0.8 - 1.2</td>
<td>0.6 - 0.8</td>
<td>0.5 - 0.6</td>
</tr>
<tr>
<td>Transistor density (cm²)</td>
<td>6.6M</td>
<td>18 M</td>
<td>44 M</td>
<td>109 M</td>
<td>269 M</td>
<td>664 M</td>
</tr>
</tbody>
</table>
Electrical Overstress Course

Field Return Failure Mode

- Fab: 26%
- Assembly: 14%
- Electrical QA: 1%
- Good: 4%
- Ion: 3%
- Unknown: 15%
- ESD/EOS: 37%
Electrical Overstress Course

Theory of EOS
Electrical Overstress Course

Theory of EOS

Intentionally left blank
An EOS failure is typically catastrophic and causes irreparable damage to the device.

- ESD and EOS are interrelated. Device weaken by ESD would have EOS easily.
- It is the large scale ESD.
- The duration of EOS events ranges from milliseconds to seconds (typical > 50 µsec).
Characteristics of EOS
Characteristics of EOS

Intentionally left blank
Electrical Overstress Course

Characteristics of EOS

- Time duration a few ns to a µs to resulting ESD.
- Time duration > 50 µs to < 100 µs causes junction punch through.
- Time duration > 100 µs causes melt metal, fused wire, and bond wire.
Miniaturization of Device
Electrical Overstress Course

Miniaturization of Device

Intentionally left blank
Miniaturization of Device

- The permissible critical field strength of expitaxial layer can be only 100V depending on thickness and doping level.
- Shallow junction depth.
- Junction breakdown voltage is usually around 20V.
Device Structure
CMOS output consist of \(p \)-channel and \(n \)-channel MOSFETs.
CMOS output consist of \(p \)-channel and \(n \)-channel MOSFET
Device Structure

Intentionally left blank
Device Structure

Power MOSFET device structure - BJT and diode parasitic components
Device Structure

IGBT device structure
Causes of EOS
Causes of EOS

Intentionally left blank
Causes of EOS

- Device designed with parasitic component which is the source of EOS.
- Bad fabrication control
 - Over etch.
 - Photo resist residue.
- Violation of design rule.
Electrical Overstress Course

Causes of EOS

Intentionally left blank
Causes of EOS

- No common ground test system and device.
 Inductive effect.
 Resistive effect.
- Improper shutdown of device
 Wrong power sequencing.
 Hot-plug the device.
Electrical Overstress Course

Causes of EOS

- Poor quality system.
 - Burn-in spike.
- Poor specifications.
- Wrong orientation.
- PCB signal integrity.
- Transient overshoot and undershoot controlled within absolute max. rating.
Electrical Overstress Course

Causes of EOS

Intentionally left blank
Causes of EOS

- Noisy power source
 - Transient spike.
 - 5 V part with a 2.5 V spike – 50% EOS.
 - 2.5 V part with a 2.5 V spike – 100% EOS.
 - 1.5 V part with a 2.5 V spike – 167% EOS.
Failure Mechanism of EOS
Electrical Overstress Course

Failure Mechanisms

- Thermal-Induced failure
 - Doping level.
 - Junction depth.
 - Device characteristic particularly dimension.

- Electro-migration
 - High electric field.
 - Migration of metal ion from high field to low field area.
Electrical Overstress Course

Failure Mechanisms

Intentionally left blank
Electrical Overstress Course

Failure Mode

Bond wire fused
Electrical Overstress Course

Failure Mode

Junction Failure
Electrical Overstress Course

Failure Mode

Metalization Melt Failure
Electrical Overstress Course

Failure Mode

Intentionally left blank
Electrical Overstress Course

Failure Mode

Secondary breakdown

Metallization burn
Diffusion damage

Diffusion damage
Electrical Overstress Course

Failure Mode

I/O resistor damage

Dr. Lim Soo King
Electrical Overstress Course

Failure Mode

Thermal EOS – base-emitter region
Electrical Overstress Course

Failure Mode

Thermal EOS – melt wires

Dr. Lim Soo King
Electrical Overstress Course

Failure Mode

Thermal EOS – latch-up

Dr. Lim Soo King
Failure Mode

- Blown metal line
- Melt contact and bus
- Melt bond pad
Theory of Failure
Electrical Overstress Course

Theory of Failure

Intentionally left blank
High current density that melts aluminum metallization and blows gold/Al bond wire.
Electrical Overstress Course

Theory of Failure - Undershoot

Intentionally left blank
Theory of Failure - Undershoot

- Simultaneous switching causing current from package, wire to be greater than forward current of diode resulting net current flow in package parasitic resistive and inductive components.
- This would cause the device’s ground well below the system.
The voltage difference between power pin and device ground will be far exceeding its normal V_{CC} voltage.

This would cause EOS.

The illustration is shown in next few foils.
Theory of Failure - Undershoot

Intentionally left blank
Theory of Failure - Undershoot
Electrical Overstress Course

Theory of Failure - Undershoot

Intentionally left blank
As illustrated in previous graph, overshoot would result the ground of the device being shifted upward.

The voltage across the device is less than V_{CC}.

Soft-bit would be resulted as a problem.
Theory of Failure – Latch-up

- This is true for CMOS and IGBT devices.
- It is caused by input voltage is greater than the power supply voltage by at least 0.7V.
- 0.7 V is the forward voltage V_F of a diode.
- The p-channel MOSFET acts lateral pnp transistor.
- The n-channel MOSFET act as vertical npi transistor.
- These two transistors are connected as thyristor.
Electrical Overstress Course

Theory of Failure – Latch-up

Intentionally left blank
Theory of Failure – Latch-up

- This event creates tremendous increase of current that the power density would melt the Al metallization or blow wire.
- Unclean power supply voltage would cause latch-up.
- Noise input such as overshoot would cause latch-up.
- The illustration of latch-up is shown in the following foils.
Electrical Overstress Course

Theory of Failure – Latch-up
Electrical Overstress Course

Theory of Failure – Latch-up

Intentionally left blank
Electrical Overstress Course

Theory of Failure – Latch-up

V_{BE} of npn transistor $> 0.7V$, leakage current, latch-up occurs.
High electric field. Electro-migration forces metal ions to move downstream mainly along the grain structure.
Electrical Overstress Course

EOS Test Methodology
Electrical Overstress Course

EOS Test Methodology

- Purpose is to weed out the infant mortality failure due to fab, assembly, handling, etc.
- Applying HBM, MM, CDM, field induced model, floating induced model according to Mil-std-883 E method 3015.7.
- Burn-in or “dirty” burn-in according to Mil-std-38510.
- Final test.
Electrical Overstress Course

Bathtub Curve of Device

Intentionally left blank
Electrical Overstress Course

EOS Prevention
EOS Prevention

Intentionally left blank
Electrical Overstress Course

EOS Prevention

- Prevent power surge by using uninterrupted power supply.
- Power line of PCB should be designed not too close to prevent high induced voltage.
- Use isolation when necessary.
- Use capacitor filtering (0.01µF) connecting to the power supply of device.
Electrical Overstress Course

EOS Prevention

Intentionally left blank
Electrical Overstress Course

EOS Prevention

- Measure the parasitic resistance and inductance of the device package to minimize voltage difference between device ground and system ground.
- Prevent hot-plug of device into or out of PCB or test socket.
- Prevent high tension inductive field such as from computer terminal.
- Use shielding technique to eliminate interference.
EOS Prevention

Intentionally left blank
Electrical Overstress Course

References

- ESDA S20.20.
- DOD-HBK-263 B.
- Mil-std-1686A.
- 883 E method 3015.7.
- Mil-std- 38510.
Electrical Overstress Course

Q and A Session
Electrical Overstress Course

Intentionally left blank