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Abstract In light of a slow buildup in CO2 emissions since the recovery, this paper revisits 

the relationship between CO2 emissions and the U.S economy using a nonlinear ARDL 

model, in which the determinants are identified through an expanded real business cycle 

model. We find convincing evidence that CO2 emissions decline more rapidly during 

recessions than increase during expansions over the long run. Of all determinants considered, 

long-run asymmetry is fostered once vehicle miles travelled is controlled. This calls for a 

greater attention to public transportation development and vehicle miles travelled tax for 

slowing down stock buildup of CO2 emissions during good times.  

Keywords  CO2 emission, nonlinear autoregressive distributed lags, climate change 

JEL classification  Q43, C32   

 

 

 

 

 

 

 

 

 

 

 

*Correspondence author: engyk@utar.edu.my. This paper was written when Stockholm 

China Economic Research Institute (SCERI) hosted the second author as Visiting Research 

Fellow. He is grateful to SCERI for stimulating research environment and Lars-Erik 

Thunholms Stiftelse for Vetenskaplig Forskning for generous stipend. This research is part of 

a project financially funded by e-Science fund from the Ministry of Science, Technology, and 

Innovation, Malaysia (MOSTI) (06-02-11-SF0174). We gratefully thank Matthew 

Greenwood-Nimmo and Yongcheol Shin for their kindness to share the program code. 

 

mailto:engyk@utar.edu.my


2 
 

1. Introduction 

News about carbon dioxide emissions occupied the headlines of popular media in the second 

half of the year 2013 when the total energy-related CO2 emission in 2012 hit the level of 

1994, reaching a historical twenty-year low in the United States. It is not unusual for CO2 

emissions to fall during economic contraction, as a shortfall of gross domestic product 

instigates adverse income effect that reduces the demand for energy from households to 

industry. What is remarkable about U.S. CO2 emission in the past five years is the fact that 

the record low level of CO2 emission occurred at a time when the economy already started to 

regain momentum to find solid footing.  

A natural question to ask is what events led to the sharp reduction in emissions. Three 

candidate explanations typically stand out: recession-driven low demand for energy, 

switching away from dirty coal to cleaner natural gas, and improvements in energy efficiency. 

Through a counterfactual exercise, CEA Annual Report (2013, p. 195-196) argued that 52% 

was due to recession, 40% because of switching to cleaner energy, and 8% came from 

accelerated improvements in energy efficiency. The conjecture that recession was the main 

culprit for CO2 emission reduction gains further credibility when emissions have risen again 

from the historical low level as a result of economic rebound, as illustrated in Figure 1.  

[INSERT FIGURE 1] 

Procylicality, however, does not rule out asymmetry. This brings us to a less-

discussed fact about the relationship between CO2 emission and the economy over the 

business cycles. Table 1 makes a comparison of changes in CO2 emission between recession 

and expansion periods in the U.S. over more than three decades. Although CO2 emissions rise 

and fall along with business cycles, the magnitude has obviously been asymmetrically 

changing over the cycles. In particular, while the magnitude of increase in CO2 emission has 

been about the same 3.07% to 3.94% during economic expansions from August 1980 
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throughout June 1981 and from July 2009 right through April 2014, respectively, the size of 

the decline in CO2 emission has stepped up from approximately 1.37% to 11.37% over the 

recession periods preceding these expansion periods.  

More striking is the observable asymmetric evolution of magnitude when we 

normalize changes in CO2 emissions by the length of business cycles. In particular, whereas 

per cycle reduction in CO2 emission has increased from 0.196% to 0.598%, per cycle 

increase in CO2 emission has dropped from 0.279% to a trivial 0.068%. Similar diverging 

patterns in the magnitude of changes in CO2 emission over the business cycles can also be 

obtained if the magnitude of business cycles becomes the normalizing factor.  

[INSERT TABLE 1 HERE] 

Against this backdrop, one can ask two questions in succession: Is the relationship 

between CO2 emission and the economy asymmetric over the short and long run? If so, what 

are the factors that bring about the asymmetry? These questions become even more relevant 

and not bounded to the case of the U.S. when for the first time in forty years, global energy-

related CO2 emissions in 2014 have remained unchanged from the previous year despite an 

expanding world economy (IEA 2015). However, almost all of the discussions on these 

questions were based on the anecdotal accounts of the pundits and institutions without 

offering scientific estimates.   

This paper fills the gap by addressing all of these questions within an empirical 

framework of nonlinear autoregressive distributed lag (NARDL) model developed by Shin et 

al. (2014). This model maintains the beauty of the conventional ARDL approach that allows 

us to estimate a model encompassing variables with different orders of integration without 

the fear of endogeneity bias. At the same time, it allows us to disentangle interactions 

between CO2 emission and the economy during economic upturn from downturn periods over 
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the short run and long run, giving us a dynamic coefficient that sheds light on the asymmetric 

output elasticity of CO2 emissions over time. 

To formulate testable hypotheses on the potential driving force of asymmetry, we lay 

out a simple real business cycle model, in which pollution emission is treated as input of 

production a la Copeland and Taylors (2004). Given the concavity of the production function, 

the model hypothesizes that an increasing output tends to increase emissions at a rate smaller 

than that of emission reduction when output is decreasing. The model also presents a 

nonseparable utility function for consumption and environmental degradation. While 

expanding consumption increasingly emits pollution, as the hypothesis goes, environmental 

degradation in terms of temperature anomaly will prompt risk-adverse households to take 

measure to reduce emissions, especially if households are intolerable to environmental 

degradation. Lastly, the model also hypothesizes that rising (falling) coal-natural gas ratio 

leads to increasing (decreasing) emissions, as coal is dirtier than natural gas. 

Based on the case of the U.S. over the period ranging from 1980 to 2014 in monthly 

frequency, the paper makes three main empirical points. First, CO2 emissions in the U.S. are 

procyclical to the economy. Second, and more important in our context, CO2 emissions 

respond asymmetrically to economic fluctuations in such a way that emissions increase at a 

rate much slower amid a growing economy than that of a decrease in the middle of a 

shrinking economy in the long run. On impact and over the short-run horizon, however, 

responses are symmetric over the business cycles.  

While our finding of asymmetries largely corroborates Doda (2013), Shahiduzzama 

(2015), and Shelton (2015), rebutting York (2012) that found an asymmetry of the opposite 

direction, our results are also compatible with those of Burke et al. (in press), which found 

short-run symmetry but long-run asymmetry for a sample of 189 countries. Unlike these 
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papers, which are silent on the question of the drivers of asymmetries, we contribute to the 

literature by sorting out what tapers the emission during the good times.     

  This brings us to the third finding. Of all popular reasons deemed to be important to 

account for the gradual decoupling of CO2 emissions from output expansion in recent years, 

reduction in vehicle miles travelled (VMT), the proxy for polluting consumption, turns out to 

be most important empirically. By controlling for VMT, output expansion becomes less 

polluting. This goes without denying a critical role for fuel switching from the dirtier coal to 

cleaner natural gas, as the switching is found to be accounting for the structural breaks as 

seen in Figure 1 in the relationship between CO2 emissions and the economy.    

Beyond its novel results and interpretation, the paper calls for attention to the 

implication of reducing miles travelled and its energy intensity in the design of climate policy 

through, for instance, improving public transportation network, introducing VMT tax, and 

developing electronic cars. Policy discussions pertaining to the reduction of CO2 emissions in 

past years focus nearly exclusively on the role of carbon tax in discouraging fuel 

consumption, the importance of alternative cleaner energy, and the benefit of increasing 

energy efficiency (see, for instance, CEA Annual Report 2013). However, as Fay et al. (2015, 

p.p 104-108) have iterated, citing Avner et al. (2014), urban planning that promotes 

densification and investments in public transportation infrastructure not only directly reduces 

total energy consumption but also substantially improves the public’s acceptance toward 

carbon tax, increasing elasticity of energy demand to carbon price.  

In a broader view, this paper can be placed along with Doda (2014), Heutel (2012), 

and Narayan et al. (2011) that assume symmetric responses. In contrast to Narayan et al 

(2011) that found a co-integrated relationship between energy consumption and industrial 

output with a productivity-driven common cyclical relationship, we cannot identify such a 
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co-integrating relationship between CO2 emissions and industrial output in a symmetric 

model. Co-integrating relationships can be found only in a long-run asymmetric model in the 

case of the United States.  

Extending the symmetric cyclical property to the context of optimal environmental 

policy over the business cycles, Heutel (2012) argued for procyclical environmental 

instruments that dampen the procyclicality of CO2 emissions (see Fischer and Heutel 2013 

for the most recent review). By bringing evidence of asymmetric procyclicality to the table, a 

natural consequence is the revision of optimal policy responses. Although giving a clear 

answer with explicit mechanism is beyond the scope of this paper, it is reasonable to infer 

that cyclicality of optimal policy itself would also be altered. 

Lastly, our paper also relates to the sizeable literature on the relationship between CO2 

emissions and economic growth. Typically known as the environmental Kuznets curve 

(EKC), emissions are hypothetically related to the level of national income in an inverted-U 

pattern. Empirical evidence accumulated thus far remains skeptical (Copeland and Taylor 

2004; Stern 2004), and the nonlinearity of the EKC is indeed not guaranteed, which generally 

occurs in rich countries but not developing countries (Bernard et al. 2015; Jaunky 2011; 

Narayan and Narayan 2010).  

In our bivariate model that accommodates both short- and long-run asymmetries, 

short-run income elasticity of emission, which equals 0.523, is approximately similar to that 

of long-run value at 0.568. By accounting for VMT, however, long-run income elasticity 

drops substantially to 0.211 compared with the short-run elasticity of 0.567, suggesting that 

U.S. has reduced CO2 emissions as its income has increased over time. In other words, 

following Narayan and Narayan’s (2010) line of argument, the EKC is there in the U.S. with 

VMT as the underlying mechanism. From another vantage point, though implicitly, the 
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findings conjecturally attribute the failure to identify nonlinear EKC in developing countries 

to the lack of infrastructure and technology that helps reduce miles travelled and its energy 

intensity even when the income level has risen.                

2. A toy model 

In this section, we lay out a simple macroeconomic model to identify a combination of 

factors one has to control when carrying out empirical investigation on the interaction 

between CO2 emissions and production. Following Copeland and Taylors (2004), pollution 

emissions function 𝑍𝑡 at time 𝑡 can be written as   

𝑍𝑡 = (1 − 𝜃)𝜑−1
𝑌𝑡     (1) 

where 0 < 𝜑 < 1  and 𝜃  denotes abatement requirement. 𝑌𝑡  is production which takes a 

Cobb-Douglas form 

𝑌𝑡 = 𝔼𝑡
𝛼𝑁𝑡

1−𝛼      (2) 

𝔼𝑡 can be generally interpreted as energy used for production in conjunction with labors hired 

𝑁𝑡. The parameter 0 < 𝛼 < 1 measures the share of energy used in production. For a firm 

which can resort to the dirtier coal 𝒞𝒪𝑡 and cleaner natural gas 𝒢𝑡 with a constant elasticity of 

substitution 𝜌 > 1 to generate energy, 𝐸𝑡 = (𝒞𝒪𝑡
𝜌

+ 𝒢𝑡
𝜌

)
1 𝜌⁄

, the function can be rewritten as  

𝔼𝑡 ≡
𝐸𝑡

𝒢𝑡
= (1 + (𝒞𝒪𝑡 𝒢𝑡⁄ )𝜌)1 𝜌⁄     (3) 

In this way, 𝔼𝑡 can also be comprehended as carbon intensity in the energy bundle. More coal 

used in the bundle relative to natural gas, greater the carbon intensity of the production is.  

 Turning to household’s utility function, adapted from Acemoglu et al. (2012), we 

allow environmental quality directly affects utility in such a way that 
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𝑢(𝐶𝑡, 𝑇𝑡, 𝑁𝑡) = (1 − 𝜎)−1[𝐶𝑡(|𝑇𝑡 �̅�⁄ |)𝜂]1−𝜎 − (1 + 𝜒)−1𝑁𝑡
1+𝜒

  (4) 

where 0 < 𝜎 < ∞ is constant relative risk aversion coefficient, the reciprocal 𝜒 > 1 is wage 

elasticity of labor supply, and −∞ < 𝜂 < 0  measures household’s tolerance toward 

environmental degradation. For illustration, we relate environmental degradation to global 

warming which results in rising or falling temperature 𝑇𝑡 over the historical average. Either 

way, environmental degradation reduces comfortability, eroding utility. Disutility is stronger 

when households are more intolerant to temperature anomaly. A non-separable function 

implies that disutility due to abnormality in temperature would also affect consumption. The 

interaction cuts two ways. One uses more intensively air-conditioning facilities during 

warmer days and heating facilities during colder days. Increasing consumption of durable 

goods, e.g., purchasing more cars and driving longer mileage, which releases greenhouse gas, 

contributes to rising temperature over the historical average. 

By setting the Lagrange multiplier 𝜆 on the flow budget constraint 𝑊𝑡𝑁𝑡 = 𝐶𝑡, where 

𝑊𝑡 is real wage, the first order conditions are   

[𝐶𝑡(𝑇𝑡 �̅�⁄ )𝜂]−𝜎(𝑇𝑡 �̅�⁄ )𝜂 = 𝜆     (5) 

𝑁𝑡
𝜒

= 𝜆𝑊𝑡      (6) 

[𝐶𝑡(𝑇𝑡 �̅�⁄ )𝜂]−𝜎(𝑇𝑡 �̅�⁄ )𝜂−1𝜂𝐶𝑡 = 𝜆    (7) 

which give us the following optimal conditions after simple substitutions  

𝑁𝑡
𝜒

= [𝐶𝑡(𝑇𝑡 �̅�⁄ )𝜂]−𝜎(𝑇𝑡 �̅�⁄ )𝜂𝑊𝑡    (8) 

𝜂𝐶𝑡 = |𝑇𝑡 �̅�⁄ |      (9) 

𝑁𝑡 = (𝜂𝐶𝑡
1−𝜎(|𝑇𝑡 �̅�⁄ |)𝜂(1−𝜎)−1𝑊𝑡𝑁𝑡)

1 (1+𝜒)⁄
   (10) 
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Eq. (8) is marginal rate of substitution between consumption and labor supply, Eq. (9) shows 

the relationship between consumption and environmental degradation when they are non-

separable in utility function, and Eq. (10) indicates marginal rate of substitution between 

labor supply and environmental degradation. Putting Eqs. (1) – (3) and (10) together with 

income distribution of total income, 𝑊𝑡𝑁𝑡 = 𝑌𝑡, we can get a function of pollution emissions 

𝑍𝑡 = (1 − 𝜃)𝜑−1
(1 + (𝒞𝒪𝑡 𝒢𝑡⁄ )𝜌)𝛼 𝜌⁄ (𝜂𝐶𝑡

1−𝜎(|𝑇𝑡 �̅�⁄ |)𝜂(1−𝜎)−1𝑌𝑡)
(1−𝛼) (1+𝜒)⁄

  (11) 

from which we can infer six testable hypotheses pertaining to the relationships between 

emissions and its contributors. Holding other constant, 

Hypothesis 1 (Emission-output): Production is positively associated with pollution 

emissions: expanding (shrinking) production leads to rising (declining) emission.    

Hypothesis 2 (Abatement cost): Emission falls should abatement requirement gets tighter. 

Hypothesis 3 (Coal-natural gas ratio): Rising (falling) coal-natural gas ratio leads to 

increasing (decreasing) emissions, as coal is dirtier than natural gas. 

Hypothesis 4 (Environmental degradation): When households are risk averse (𝜎 < 1), 

environmental degradation in terms of temperature anomaly |𝑇𝑡 ≠ �̅�| will prompt households 

to take measure to reduce emissions, especially if households are intolerable to environmental 

degradation (𝜂 ⟶ −∞). 

Hypothesis 5 (Consumption of transportation service) Consumption expansion 

(contraction) contributes to increasing (decreasing) emissions. 

Hypothesis 6 (Nonlinearity/Asymmetry) Given that −𝛼 < 𝜒 , Eq. (11) is a concave 

function, meaning a nonlinear relationship between emissions and production. In particular, 
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an increasing output tends to increase emissions at a rate smaller than that of emission 

reduction when output is decreasing. 

3. Empirical framework: Nonlinear autoregressive distributed lag approach 

Drawing on the work of Shin et al. (2014), we empirically revisit the CO2 emission-output 

relationship by addressing the possibility of asymmetric output responses of CO2 emission 

over upbeat and downbeat business cycles over the short run and long run, as evidenced by 

observations discussed earlier and informed by Eq. (11). Unlike the existing nonlinear models 

used in the literature, the key strength of Shin et al.’s (2014) nonlinear autoregressive 

distributed lag model (NARDL) lies in the flexibility of modeling strategy to encompass all 

likely combinations of short-run and long-run (a)symmetry in CO2 emission-output 

relationship. In addition, the model also maintains the celebrated advantage of a typical 

ARDL model in that, irrespective of whether the underlying variables are trend- or first-

difference stationary, the nonlinear long-run level relationship between the variables can be 

estimated and tested by using a simple ordinary-least-square estimator.  

Building on the works of Pesaran and Shin (1999) and Pesaran et al. (2001), the 

NARDL model decomposes the regressor into positive and negative changes.   

𝑍𝑡 = 𝛽+𝑌𝑡
+ + 𝛽−𝑌𝑡

− + 𝑢𝑡, for ∆𝑌𝑡 = ν𝑡    (12) 

where Δ is the first-difference operator, and 𝛽+𝑎𝑛𝑑 𝛽−  are the asymmetric long run 

parameters. We define 𝑌𝑡
+  as the partial sum processes of positive change in 𝑌𝑡 , that is, 

𝑌𝑡
+ = ∑ ∆𝑌𝑗

+𝑡
𝑗=1 = ∑ max (∆𝑌𝑗, 0)𝑡

𝑗=1 , and 𝑌𝑡
− as the partial sum of processes of negative 

change in 𝑌𝑡 , where 𝑌𝑡
− = ∑ ∆𝑌𝑗

−𝑡
𝑗=1 = ∑ min (∆𝑌𝑗, 0)𝑡

𝑗=1 . 𝑌0  is the initial value such that 

𝑌𝑡 = 𝑌0 + 𝑌𝑡
+ + 𝑌𝑡

− . The long-run regression model can be embedded into a standard 
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autoregressive distributed lag (p,q) framework (in levels) to give us a NARDL(p, q)-in-levels 

model as follows: 

𝑍𝑡 = ∑ 𝜙𝑗𝑍𝑡−𝑗
𝑝
𝑗=𝑖 + ∑ (𝜃𝑗

+𝑌𝑡−𝑗
+ + 𝜃𝑗

−𝑌𝑡−𝑗
− )𝑞

𝑗=0 + 𝜀𝑡   (13) 

where the 𝜙𝑗  are autoregressive parameters, 𝜃𝑗
+  and 𝜃𝑗

−  refer to asymmetric distributed-lag 

parameters, and 𝜀𝑡 is an i.i.d process with zero mean and constant variance. The associated 

error-correction representation (ECM) for NARDL model can be derived as  

𝛥𝑍𝑡 = 𝜌𝑍𝑡−1 + 𝜃+𝑌𝑡−1
+ + 𝜃−𝑌𝑡−1

− + ∑ 𝛾𝑗𝛥𝑍𝑡−𝑗 +
𝑝−1

𝑗=1
∑ (𝜑𝑗

+𝛥𝑌𝑡−𝑗
+ + 𝜑𝑗

−𝛥𝑌𝑡−𝑗
− )

𝑞−1

𝑗=0
+ 𝜀𝑡   

(14) 

where 𝜌 = ∑ 𝜙𝑗 − 1𝑝
𝑗=1 , 𝜃+ = ∑ 𝜃𝑗

+𝑞
𝑗=0 , 𝜃− = ∑ 𝜃𝑗

−𝑞
𝑗=0 , 𝛾𝑗 = − ∑ 𝜙𝑖

𝑝
𝑖=𝑗+1  for j=1,…,p-1; 

𝜑0
+ = 𝜃0

+, 𝜑𝑗
+ = − ∑ 𝜃𝑗

+𝑞
𝑖=𝑗+1  for j=1,…, q-1, 𝜑0

− = 𝜃0
−, 𝜑𝑗

− = − ∑ 𝜃𝑗
−𝑞

𝑖=𝑗+1  for j = 1,…, q-1. 

The long-run asymmetric parameter that corresponds to (1) can be defined as 𝛽+ = −𝜃+/𝜌 

and 𝛽− = −𝜃−/𝜌.  

3.1. Dealing with endogeneity 

Given the potential feedback of pollution emissions on output, especially in the short run, 

regression of Eq. (14) is likely to suffer from endogeneity bias that induces non-zero 

contemporaneous correlation between regressors and residuals. To address this problem, we 

can specify a marginal data generating process for ∆𝑌𝑡 wherein ∆𝑌𝑡 = ∑ Λ𝑗ΔY𝑡−𝑗 + 𝜈𝑡
𝑞−1
𝑗=1  to 

bridge 𝜀𝑡 over 𝜈𝑡 such that   

𝜀𝑡 = 𝜔′(Δ𝑌𝑡 − ∑ Λ𝑗Δ𝑌𝑡−𝑗
𝑞−1
𝑗=1 ) + 𝑒𝑡 = 𝜔′𝜈𝑡 + 𝑒𝑡   (15) 

By construction, 𝑒𝑡  and 𝜈𝑡  are uncorrelated. The conditional nonlinear ECM can thus be 

derived as follows: 
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𝛥𝑍𝑡 = 𝜌𝑍𝑡−1 + 𝜃+𝑌𝑡−1
+ + 𝜃−𝑌𝑡−1

− + ∑ 𝛾𝑗𝛥𝑍𝑡−𝑗 +
𝑝−1

𝑗=1
∑ (𝜋𝑗

+𝛥𝑌𝑡−𝑗
+ + 𝜋𝑗

−𝛥𝑌𝑡−𝑗
− )

𝑞−1

𝑗=0
+ 𝑒𝑡

 (16) 

where 𝜋0
+ = 𝜃0

+ + 𝜔, 𝜋0
− = 𝜃0

− + 𝜔, 𝜋𝑗
+ = 𝜑𝑗

+ − 𝜔′Λ𝑗, and 𝜋𝑗
− = 𝜑𝑗

− − 𝜔′Λ𝑗 for j = 1,…, q-

1. As a result, the conditional specification of Eq. (16) perfectly corrects for the potential 

weakly endogeneity of non-stationary regressors for a NARDL model, ensuring that causal 

relationship only runs from the economy to the emission both in the short and long run (Coers 

and Sanders 2013, Jaunky 2011).  

3.2. Developing empirical hypothesis of asymmetry 

The conditional nonlinear ECM model (16) encompasses both short-run and long-run 

asymmetric effects. By specifying a null hypothesis of symmetric adjustment over the long 

run, where 𝛽+ = 𝛽−, and short run, 𝜋𝑗
+ = 𝜋𝑗

− for all j = 0,…, q-1, we can detect the presence 

of asymmetries through the use of a simple Wald test. In general, there are four combinations 

of asymmetries to be tested. 

(i) A rejection of short-run and long-run symmetries, which implies a NARDL model as 

in (16) over both the short run and long run;  

(ii) A rejection of long-run but not short-run symmetry, which yields the following model 

𝛥𝑍𝑡 = 𝜌𝑍𝑡−1 + 𝜃+𝑌𝑡−1
+ + 𝜃−𝑌𝑡−1

− + ∑ 𝛾𝑗𝛥𝑍𝑡−𝑗 +
𝑝−1

𝑗=1
∑ 𝜋𝑗 𝛥𝑌𝑡−𝑗

𝑞−1

𝑗=0
+ 𝑒𝑡  (17) 

(iii) A rejection of short-run but not long-run symmetry to give us 

𝛥𝑍𝑡 = 𝜌𝑍𝑡−1 + 𝜃𝑌𝑡−1 + ∑ 𝛾𝑗𝛥𝑍𝑡−𝑗 +
𝑝−1

𝑗=1
∑ (𝜋𝑗

+𝛥𝑌𝑡−𝑗
+ + 𝜋𝑗

−𝛥𝑌𝑡−𝑗
− )

𝑞−1

𝑗=0
+ 𝑒𝑡 (18) 
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(iv)  A non-rejection of short-run and long-run symmetries, which strips the NARDL 

model down to a standard symmetrical ARDL (p,q) model, as in Pesaran and Shin 

(1999) and Pesaran et al. (2001) 

𝛥𝑍𝑡 = 𝜌𝑍𝑡−1 + 𝜃𝑌𝑡−1 + ∑ 𝛾𝑗𝛥𝑍𝑡−𝑗 +
𝑝−1

𝑗=1
∑ 𝜋𝑗∆𝑌𝑡−𝑗

𝑞−1

𝑗=0
+ 𝑒𝑡  (19) 

To be in line with much of the existing literature (i.e., Greenwood-Nimmo and Shin 

2013), we also evaluate the symmetry of the impact multiplier, that is, 𝐻0: 𝜋0
+ = 𝜋0

−. Once a 

long-run relationship is detected in the NARDL model, the parameters for long-run 

asymmetry in Eq. (12) can be estimated as 𝛽+ = −𝜃+/𝜌 and 𝛽− = −𝜃−/𝜌, or 𝛽1 = −𝜃/𝜌 if 

the model, which takes the form 𝑍𝑡 = 𝛼0 + 𝛽1𝑌𝑡 + 𝜀𝑡, is symmetric in the long run. Lastly, as 

in Shin et al. (2014), we compute recursively the asymmetric responses of 𝑍𝑡 to a unit change 

in 𝑌𝑡
+ and 𝑌𝑡

−, respectively, from the estimated parameters of Eq. (16) as follows  

𝑚ℎ
+ = ∑

𝜕𝑍𝑡+𝑗

𝜕𝑌𝑡
+

ℎ

𝑗=0
 

𝑚ℎ
− = ∑

𝜕𝑍𝑡+𝑗

𝜕𝑌𝑡
−

ℎ

𝑗=0
 

for ℎ = 0,1,2, …        (20) 

where 𝑚ℎ
+ → 𝛽+and 𝑚ℎ

− → 𝛽− when ℎ → ∞ by construction. This dynamic multiplier (𝑚ℎ
𝑖 ) 

is able to illuminate the dynamic adjustments from the initial point to long-run equilibrium 

through short-run disequilibrium among the system variables in the aftermath of a shock 

hitting the system. 

3.3. Statistical robustness against spurious regression 
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When economic variables are non-stationary, stochastic processes exhibiting cointegration 

help avoid the problem of spurious regression. Specifications in Eq. (16) through Eq. (19) 

allow a pragmatic bound-test procedure to identify the existence of cointegrating relationship 

between a dependent variable and a set of regressors with unknown order of integrations. To 

detect cointegration, two statistics are deemed appropriate, namely, the tBDM-statistic 

proposed by Barnejee et al. (1998) on testing the null of 𝜌 = 0 against the alternative of 

𝜌 < 0 and the FPSS statistic by Pesaran et al. (2001). In particular, we set up and test a null of 

no cointegrating relationship between levels of 𝑍𝑡 , 𝑌𝑡
+, and 𝑌𝑡

− (𝐻0: 𝜌 = 𝜃+ = 𝜃− = 0) for 

Eqs. (16) and (17) and that of 𝑍𝑡  and 𝑌𝑡  (𝐻0: 𝜌 = 𝜃 = 0 ) for Eqs. (18) and (19) using a 

standard F test. The critical bounds for all classifications are readily available in Pesaran et 

al. (2001). If the FPSS statistic computed lies (below) above the upper bound, the variables are 

(not) cointegrated. If it lies within the bounds, a conclusive inference about the long-run 

relationship cannot be made without knowing the order of integration of the regressors.  

3.4. In search of the driving forces 

To address the succeeding question of what shapes the asymmetry, we extend the bivariate 

emissions-output model to a multivariate model in such a way that  

𝑍𝑡 = 𝛽+𝑌𝑡
+ + 𝛽−𝑌𝑡

− + 𝛃𝑤
′ 𝐖𝑡 + 𝑢𝑡     (21) 

where 𝐖𝑡  is a g x 1 vector of additional covariates entered symmetrically, and 𝛃𝑤
′  is the 

corresponding K x 1 vector of coefficients. Following the discussion, as in the bivariate case, 

it is straightforward to see that the estimation and inferences for this multivariate model can 

be carried out in a similar fashion regardless of the order of integration for 𝑌𝑡  and 𝐖𝑡  or 

whether they are mutually cointegrated. Embedding this long-run regression within the 

NARDL approach, we have 
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𝛥𝑍𝑡 = 𝑍𝑡−1 + 𝜃+𝑌𝑡−1
+ + 𝜃−𝑌𝑡−1

− + 𝛉𝑤𝐖𝑡−1 + ∑ 𝛾𝑗𝛥𝑍𝑡−𝑗

𝑝−1

𝑗=1
+ ∑ (𝜋𝑗

+𝛥𝑌𝑡−𝑗
+ +

𝑞−1

𝑗=0

𝜋𝑗
−𝛥𝑌𝑡−𝑗

− + 𝛑𝑤,𝑗
′ 𝐖𝑡−𝑗) + 𝑒𝑡      (22) 

Eq. (22) is thus the empirical model that corresponds to the theoretical model in Eq. (11) in 

the sense that decomposition of positive and negative shocks hitting production in Eq. (22) 

account for asymmetry in the relationship between emissions and production (Hypotheses 1 

and 6), whereas the vector of additional covariates 𝐖𝑡 addresses Hypotheses 2 to 5.  

4. Results and discussion 

4.1. Proxy and data 

We use U.S. monthly data on total energy-related carbon emissions measured in million 

metric tons of carbon dioxide provided by the U.S. Energy Information Administration that 

spans from January 1980 to April 2014 to indicate carbon dioxide emissions (CO2). Because 

gross domestic product measured on a monthly basis is not available, in keeping with the 

literature, we use the industrial production index (2007=100) (IPI) as a proxy for the 

economy, sourced from St Louis Fred database. The vector of additional covariates 𝐖𝑡 which 

addresses Hypotheses 2 to 5 includes  

(i) Energy Policy Act 2005 as a proxy for abatement measure, 

(ii) A ratio between coal and natural gas consumption (CGAS), 

(iii) Cooling degree days (CDD) and heating degree days (HDD), which, respectively, 

refer to outdoor temperature that exceeds (fall short of) the mean daily 

temperature of 65 Fahrenheit (18.3 Celsius) as proxy for environmental 

degradation (in terms of temperature anomaly), and 
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(iv) U.S. vehicle miles travelled (VMT) as a proxy for polluting consumption of 

transportation services.  

Data on coal and natural gas consumption are sourced from the U.S. Energy Information 

Administration, whereas data on HDD and CDD are taken from the Annual Energy Review 

published by the U.S. Energy Information Agencies.  VMT is sourced from the St Louis Fred 

database. We transform all data into natural logarithm form, which explains the letter L 

preceding shorthand of each proxy, and seasonally adjust the series using the Census 

Bureau’s X-12-ARIMA procedure to account for seasonal patterns during the winter and 

summer months.   

4.2. Stochastic properties of the time series 

As a preliminary test, we conduct augmented Dickey-Fuller unit root test on the time series 

involved to ensure that none of the series has an order of integration of I(2) (Dickey and 

Fuller 1979). To ensure that results of the unit root testing are not contaminated by the 

presence of structural breaks, we also conduct Lee and Strazizich’s (2003) unit root test, 

which endogenously accounts for two structural breaks. The results of unit root tests reported 

in Table 2 suggest that the series are mostly I(1) and robust to the inclusion of structural 

breaks. Most importantly, none of them is I(2). In short, the findings of a mixture of I(0) and 

I(1) without I(2) series make the NARDL approach practically relevant and useful.  

[INSERT TABLE 2 HERE] 

4.3. Emission-output relationships in bivariate models 

We start the exercise by estimating a bivariate model of Eq. (14). We consider four different 

model specifications according to Eqs. (16) - Eq. (19): Model AA, which admits both long-

run and short-run asymmetries; Model SA, which permits short-run asymmetry along with 



17 
 

symmetric long run; Model AS, which accommodates long-run asymmetry but imposes 

symmetrical short-run dynamics, and lastly, Model SS as a simple linear ARDL model that 

does not allow for any asymmetric relationship. We follow the general-to-specific approach 

to obtain a statistically appropriate NARDL model specification. Beginning with a maximum 

lag of nine and using a unidirectional 5% decision rule, we eliminate all statistically 

insignificant regressors. The most parsimonious model that passes a battery of diagnostic 

checks is preferred. Table 3 summarizes the estimated results for all four models.  

[INSERT TABLE 3 HERE] 

Generally, the simple bivariate CO2 emission-output NARDL models are 

unsatisfactory in many aspects. We cannot reject the null of no cointegration relationship in 

all cases using Pesaran et al.’s (2001) F-test, which is more appropriate for models with 

mixed orders of integration, suggesting that the regression results could suffer from spurious 

regression problems. Furthermore, the residuals are not normally distributed. Together with 

diagnostic tests that show the presence of the ARCH effects and autocorrelated residuals, we 

believe that important variables may have been omitted, indicating the relevance of 

multivariate models in our context. Lastly, inferred from the Quandt-Andrews unknown 

breakpoint tests (SupD, ExpF, and AveF statistics), we may ignore the presence of structural 

breaks in all four cases at our own perils (see Andrews, 1993; and Andrews and Ploberger, 

1994). 

4.4. What shape the asymmetry? Evidence from multivariate model  

In search of the empirical proxy for driving forces theoretically identified in Eq. (11) 

which shape the dynamics between emissions and the economy, we decompose total 

emissions into four major emitters according to the data released by the EIA. Exhibited in 

Figure 2, these include commercial and residential combined (for an obvious reason, as both 
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consume energy mainly through air-conditioners for cooling and heaters for heating, besides 

lighting etc.), electric power, transportation, and industry. The first two categories apparently 

are the main emitters. An interesting observation is how CO2 emissions from the electric 

power sector track almost perfectly those emissions from commercial and residential sectors. 

Transportation has taken over industry as the next most important source of emissions since 

the 2000s.  

[INSERT FIGURE 2 HERE] 

Given the empirical importance of transportation as source of emitter, we specify 

consumption in Eq. (11) as consumption of transportation services, for which we use the U.S. 

VMT as a proxy in the estimation of Eq. (22). On the other hand, we use CDD and HDD as 

proxy for temperature anomaly. This proxy shall also be explanatory on total emissions from 

commercial and residential sectors, as energy demand and thus emission are greater due to 

heating and cooling purposes during days with anomalous temperature. Lastly, given the fact 

that electric power sector and industry belong to production activities, IPI serves as the 

indicator.  

It is worth noting that CO2 emission of activity X can actually be decomposed into 

energy-intensity of the activity, that is the ratio between energy demand (ED) and the 

activity, and its carbon intensity in terms of CO2 emitted per energy used.  

𝐶𝑂2

𝑋
=

𝐶𝑂2

𝐸𝐷⏟
𝐶𝑎𝑟𝑏𝑜𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

×
𝐸𝐷

𝑋⏟
𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

 

What VMT, HDD/CDD and IPI have captured is the energy intensity of the economic 

activity: more energy is needed when longer mileages are travelled, more productions are 

ongoing, and heating (cooling) degree-days are greater, given the carbon intensity. However, 

carbon intensity cannot be held constant in the long run especially when technology 
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advances, allowing fuel switching from dirtier coal to cleaner natural gas in the electricity 

power sector. Many have claimed that coal-to-gas fuel switching has been the major driver of 

the reduction of emission intensity in recent years (see, for instance, CEA Annual Report 

2013; Trembath et al. 2013). Hence, we incorporate CGAS that serves as the proxy for coal-

to-natural-gas fuel switching and hence carbon intensity, which corresponds to Eq. (3).  

We start with a multivariate NARDL model of Eq. (22) in the specification that 

hypothesizes asymmetry in both short and long run (Model AA). Added sequentially to 

Model AA are a set of explanatory variables to establish the empirical Model AA1 to Model 

AA9.  

We first take stock of the role of the Energy Policy Act (EPA) of 2005, which has 

often been touted as the first omnibus energy legislation that addresses the issue of energy 

security plaguing the U.S. for decades and advances energy efficiency through incentives, as 

a policy proxy for abatement. Although CO2 emissions reduction is not intended in the EPA, 

it may be of interest to take a statistical glimpse of its unintended indirect impact on CO2 

emissions reduction.  

To do so, we assign a policy dummy variable in three ways. First, the dummy variable 

in Model AA1 is a one-time off dummy, where the variable takes a value of one in August 

2005 and zero otherwise. Alternatively, as for Model AA2, the dummy variable takes a value 

of one from August 2005 onwards and zero otherwise. Lastly, to capture the potential indirect 

impact on carbon intensity, we assign an interactive variable in Model AA3 that involves a 

dummy variable as defined in Model AA2 and the lagged logged coal-to-natural-gas 

consumption ratio (LCGAS(-1)).  

We estimate the role of temperature anomaly in Model AA4 that incorporates HDD, 

Model AA5 that considers CDD, and Model AA6 that examines the impact of HDD and 
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CDD simultaneously. Meanwhile, the role of carbon intensity as indicated by coal-to-gas fuel 

switching is gauged in Model AA7. Model AA8 examines the empirical role of VMT, and 

lastly, Model AA9 is a full model that incorporates all driving forces at once.  

Of all the results reported in Table 4, a finding consistently found across all Model 

AA specifications (except for a marginal case for Model AA8): we can reject the null 

hypothesis of long-run symmetry, although we fail to do so for the null hypothesis of short-

term symmetry. The fact that growth rates in CO2 emissions respond identically to output 

growth rates over business cycle horizons but asymmetric over the long run, meaning 

emission is less responsive when the economy expands than when it recesses, can thus be 

convincingly established.  

[INSERT TABLE 4 HERE] 

In view of the non-rejection of short-run symmetry, we check the robustness of the 

findings in Table 4 by restricting the model to be symmetric in the short run, giving us Model 

AS, of which we repeat the model specifications as for Model AAs and check for diagnostic 

tests. The results are reported in Table 5. In terms of the sign, size, and statistical significance 

of the variables in Model AS and its variants are actually barely different from those 

exhibited in Model AAs. More important, the hypothesis of asymmetry remains intact. As 

Model AS9 stands out as the most robust and convincing model of all we have tested 

statistically, our discussion focuses mainly on Model ASs, as reported on Table 5, which 

leads to Model AS9 at the end.   

[INSERT TABLE 5 HERE] 

We can comprehend the results reported in Table 5, as well as those in Table 4, 

according to the hypotheses derived in Section 2.   
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Hypothesis 1 (Emission-output): Emissions is found to be procyclical to the economy 

over both short and long run across all variants of the model. While economic expansion 

contributes to increasing emission, economic contraction results in falling emission. On 

statistical front, of all model specifications, we find that Model AS9, reported in the last 

column in Table 5, which includes all identified factors, is empirically most appropriate to 

capture the interactions between CO2 emissions and the economy because it does not suffer 

from any econometric problems. There is neither an autocorrelation nor an autoregressive 

conditional heteroscedasticity problem. Normally distributed residuals make our hypothesis 

testing reliable. Furthermore, the null of no cointegration relationship is rejected by both the 

tBDM statistics of Barnejee et al. (1998) and the F-test of Pesaran et al. (2001), indicating that 

the regression results are not spurious. 

Hypothesis 2 (Abatement cost): The policy coefficient, however defined, is statistically 

not significant.   

Hypothesis 3 (Coal-natural gas ratio): Coal-to-gas fuel switching is clearly an important 

driving force in two ways. On the one hand, it is statistically significant with correct sign. On 

the other hand, through Quandt-Andrews unknown breakpoint tests, it is found that the null 

of no structural breaks survives only when LCGAS is included in the model (either Model 

AS7 or Model AS9), leaving the regression not controlling for the presence of structural 

breaks without implication. This finding corroborates informal conjecture that a decline in 

carbon intensity due to fuel switching accounts for the observable breaks in CO2 emissions as 

exhibited in Figure 1.  

Hypothesis 4 (Environmental degradation): HDD are trivial in magnitude and 

statistically insignificant. Second, in contrast to the statistically insignificant HDD, 

temperature anomaly in terms of higher cooling degree-days is more critical not only for 
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being statistically significant, the overall model performance also improves once CDD is 

accounted for in the estimation. In particular, variables become cointegrated, and there are 

neither autocorrelated residuals nor ARCH effects, although the null of no structural breaks 

remains rejected. Moreover, the negative sign is consistent with what the theory has inferred: 

when the outdoor day’s temperature exceeds 65 degree Fahrenheit more frequently due to 

global warming, altruistic and risk-adverse households take measures to reduce emission, 

holding other factors constant. 

Hypothesis 5 (Consumption of transportation services): Consistent with the theoretical 

hypothesis, increasing (decreasing) consumption on transportation services as indicated by 

longer vehicle miles travelled contributes to rising (falling) emissions. The magnitude is 

impactful (in fact, size of the coefficient is the largest among all driving forces) and 

statistically significant. 

Hypothesis 6 (Asymmetry): What causes asymmetry? We capture the asymmetries of the 

model by taking a ratio of long-run coefficients for positive and negative output changes 

(𝛽+ 𝛽−⁄ ) , and check for its for statistical significance using Wald test. A value of 

(approximately) one simply indicates long-run symmetry. A value that approximates zero 

implies long-run asymmetry with stronger emission-output nexus during recessions. In 

contrast, a value that drifts above one suggests long-run asymmetry with stronger emission-

output nexus during expansions.  

This brings us to the role of vehicle miles travelled. In Model AS8, which includes 

LVMT, long-run positive output elasticity of the emissions has substantially dropped from 

the range of 0.551 to 0.613 for all other model specifications excluding LVMT to 0.215. 

Although CO2 emissions also become less elastic to a decrease in industrial output over the 
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long run, interestingly, the extend of asymmetry is nearly halved from the range of 0.642 to 

0.709 in all other model specifications to 0.362, with convincing statistical significance.  

In other words, once controlling for the total vehicle miles travelled, not only can 

output expansion be much less polluting, but emissions also reduce at a rate approximately 

three times faster than that of any increase in emissions. This finding is robust to an 

estimation that incorporates all conditional factors concurrently as in Model AS9. What’s 

more interesting is the role of VMT even in the short run: once it is controlled, a change in 

output growth rate has nearly negligible impact on emission growth rate (Model AS8). In 

fact, along with other controlled variables, as in Model AS9, an output expansion can be 

decarbonizing (∑ 𝜋𝑗
𝑞−1
𝑗=1 = −0.29).  

Another interesting finding that may shed light on environmental Kuznets curve 

(EKC) is worth noting. EKC hypothesizes an inverted-U relationship between the emission 

and the level of national income in such a way that pollution emission first arises when the 

economy expands but then declines after an income threshold is surpassed (Copeland and 

Taylor, 2004; Stern, 2004; Bernard et al., 2015). Narayan and Narayan (2010) argue that a 

smaller long-run vis-à-vis short-run income elasticity of emission is an indicator for the 

presence of EKC. This is exactly what we have found in our long-run results.  

In our bivariate Model AA, which omits the driving forces but flexibly accommodates 

both short and long-run asymmetry, the short-run income elasticity of emission, which equals 

0.523, is approximately similar to that of the long-run value at 0.568. However, once we 

account for VMT as in our multivariate Model AA8, the long-run income elasticity drops 

substantially to 0.211 compared with the short-run elasticity of 0.567, suggesting that the 

U.S. has reduced CO2 emissions as its income has increased over time. In view of this 

finding, we suggest that technological and infrastructural advancement, which can reduce 
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carbon and energy intensity of VMT, constitutes the underlying mechanism of EKC. To 

speak differently, the failure to identify nonlinear EKC in developing countries can be 

attributed to the lack of infrastructural and technological advancements that help reduce miles 

travelled and its energy intensity even when the income level has risen.                

4.5. Cumulative dynamic multiplier 

The shape of the cumulative dynamic multipliers, as exhibited in Figure 3, can illustrate our 

statistically finest Model AS9 of long-run asymmetry with short-run symmetry. Specifically, 

the upper (lower) solid dashed line in Figure 3 represents the cumulative dynamics of CO2 

emissions with respect to a 1% increase (decrease) in industrial output, the thick dashed lines 

compute the difference between positive and negative responses, and the thin dash lines 

provide bootstrapped 95% confidence intervals. One can observe that the carbon emission 

respond symmetrically to positive and negative cumulative changes in the output in the short 

run, as depicted by the difference line that stays on the zero line for the first two quarters. 

Throughout a longer time horizon, however, the gap between the two responses starts to 

widen, inclining toward negative responses. Consistent with the results reported in Table 5, 

such evolution of dynamic multipliers starkly illustrates a case in which the magnitude of 

CO2 emission reduction during bad time overwhelms CO2 emission buildup during good time 

in the long run.  

[INSERT FIGURE 3 HERE] 

5. Conclusion with policy remarks 

Factoring in potential asymmetric responses of CO2 emissions toward the ups and downs of 

the economy brings new light on the empirical validity over different claims on the evolving 

linkages between emissions and the economy. In particular, our analysis suggests that output 

elasticity of emissions is stronger during recessions than that during expansions in the long 
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run, although changes in emissions vary symmetrically over the business cycle horizons in 

the short run. Furthermore, by bringing vehicle miles travelled and coal-to-natural-gas fuel 

switching into the limelight, this paper bestows empirical support to the role of the former in 

prompting favorable asymmetric output responses of CO2 emissions in the long run, whereas 

the latter is responsible for the structural break observed in CO2 emission-output relationship. 

The results are robust to varying model specifications and convincingly pass a battery of 

diagnostic checks. 

Extending from the above results, this paper naturally calls for attention on the 

importance of strategies for reducing VMT, which has been largely absent all this while, in 

the design of climate policy. Policy discussions pertaining to the reduction of CO2 emissions 

from the transportation sector focus almost exclusively on identifying alternative types of fuel 

and on increasing vehicle fuel efficiency. While not denying the importance of fuel switching 

from dirtier to cleaner types, as our results also suggest that coal-to-gas switching accounts 

for the presence of structural breaks in the relationships between CO2 emissions and 

industrial output, the policy scope for reducing VMT can be extended, for instance, to the 

domain of public transportation network and VMT tax. A better developed public 

transportation, while directly reducing total energy consumption and improving public’s 

acceptance toward carbon tax, underpins the favorable asymmetric responses of CO2 

emissions by providing a cleaner substitute to the usual car drivers who tighten the belt 

during recessions – a habit that is likely to be locked-in and to remain even when the 

economy recovers. 

Our paper is a first step toward a more comprehensive empirical study in search of a 

larger set of explanatory factors for the relationship between CO2 emissions and the economy 

that factors in the asymmetries. Several directions of future research appear fruitful. First, it 
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would be useful to probe into a cross-country investigation to identify the degree and pattern 

of asymmetries across countries. Second, it would also be valuable to examine the 

implications of controlled factors in time varying manner in view of the fact that factors 

underlying the asymmetries may vary over the time. Lastly, setting up a model that can 

coherently account for the asymmetries and offer a structural interpretation on its underlying 

mechanism will be of great relevance to the design of optimal environmental policy that 

curbs the emissions without amplifying business cycles and putting long-run growth at stake.        
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Fig. 1 Total carbon dioxide emissions in the U.S, January 1980 – April 2014 
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Fig. 2 Tracking the main emitters 
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Notes: lipi+ and lipi-, respectively, are the cumulative dynamic multiplier of CO2 emissions with respect to a 

1% positive and negative shock hitting industrial output. The thick dashed red lines compute the difference 

between the positive and negative effects, whereas the light dashed red lines provide the confidence interval of 

two standard errors for the difference line computed by stochastic simulation. Tick marks on the horizontal axis 

denote monthly intervals, whereas the vertical axis is in percentage point. 

Fig. 3 The long-run multiplier 
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Table 1 A comparison of changes in U.S carbon dioxide emissions across recession and 

expansion periods 

Recession Periods Expansion Periods 

   

 

%CO2 

normalized by 

    

%CO2 

normalized by 

Start End 
% 

CO2 
% IPI 

% 

IPI 
Periods Start End 

% 

CO2 

% 

IPI 

% 

IPI 
Periods 

1980M01 1980M07 -1.371 -7.289 0.188 -0.196 1980M08 1981M06 3.071 5.414 0.567 0.279 

1981M07 1982M11 -5.776 -8.746 0.660 -0.340 1982M12 1990M06 19.088 29.124 0.655 0.210 

1990M07 1991M03 -3.987 -3.775 1.056 -0.443 1991M04 2001M02 18.858 40.877 0.461 0.158 

2001M03 2001M11 -4.596 -3.808 1.207 -0.511 2001M12 2007M11 7.927 28.958 0.274 0.345 

2007M12 2009M06 -11.369 -18.354 0.619 -0.598 2009M07 - 3.941 20.076 0.196 0.068 

Notes: Dates of business cycles are defined by NBER Business Cycle Dating Committee. %CO2 and %IPI, 

respectively, refer to percentage change in total carbon dioxide emissions and in industrial production index. 

 

Table 2 Results of unit root tests 

Notes: Number of the parenthesis is the lag selected based on Akaike information criterion. *** (**) * 

denotes significance at 1% (5%) and 10%. LIPI denotes industrial production index (2007=100), LCO2 is the 

carbon dioxide emission, LCDD denotes the Cooling Degree Days, LHDD refers to the Heating Degree Days, 

LCGAS is the coal-to-natural-gas consumption ratio, and LVMT is the vehicle miles traveled. “+” and “-” refer 

to positive and negative partial sums. All variables are in natural logarithms.  

 

 

 

 

  Augmented Dickey Fuller (ADF) LM Unit Root Test with Two Structural Breaks 

 

Constant 

Constant and 

Trend 

Break in  

Intercept  TB1 TB2 

Break in 

Intercept and 

Trend TB1 TB2 

LEVEL         

LCO2 -1.147 (5) -1.822 (4) -2.606 (2) 1994:05 2005:12 -5.954 (11)** 2000:02 2008:06 

LIPI -0.556 (13) -1.813 (13) -1.864 (12) 1983:11 2008:11 -4.456 (12) 1997:03 2000:03 

LIPI+ -1.070 (3) -2.036 (3) -2.519 (6) 1985:11 1991:04 -4.213 (9) 1990:03 1998:11 

LIPI- -1.089 (5) -2.640 (5) -1.855 (10) 2008:09 2008:11 -4.721 (16) 1986:03 2008:07 

LCDD -4.887 (11)*** -5.310 (11)*** -3.329 (11) 1997:02 2004:12 -8.989 (11)*** 1984:12 1996:03 

LHDD -17.728 (0)*** -17.857 (0)*** -5.003 (15)*** 1983:08 1984:07 -8.186 (11)*** 1983:07 2006:07 

LCGAS -3.469 (12)*** -4.434 (11)*** -3.565 (15)* 1983:05 1984:12 -9.265 (11)*** 1993:01 2007:02 

LVMT -3.074 (17)** 1.182 (8) -1.773 (17) 1994:12 2003:10 -4.455 (13) 1995:01 2007:12 

FIRST DIFFERENCE (D) 

       DLCO2 -12.274 (5)*** -12.261 (4)*** -3.123 (12) 1983:08 1983:12 -13.982(17)*** 1989:11 1991:10 

DLIPI -5.607 (12)*** -5.599 (12)*** -6.528 (12)*** 1992:08 2010:10 -9.684 (11)*** 2005:07 2007:10 

DLIPI+ -8.741 (2)*** -8.787 (2)*** -8.770 (2)*** 1983:05 1983:08 -11.634 (1)*** 1995:06 1998:07 

DLIPI- -5.943 (4)*** -5.952 (4)*** -5.987 (11)*** 2006:11 2010:09 -10.025 (11)*** 2005:07 2008:08 

DLCDD -8.707 (17)*** -8.698 (17)*** -3.119 (16) 1983:10 1984:08 -17.328 (14)*** 1984:10 1986:02 

DLHDD -17.402 (11)*** -17.381 (11)*** -4.340 (14)** 1983:06 1984:05 -14.087 (14)*** 2000:05 2003:08 

DLCGAS -9.513 (10)*** -9.502 (10)*** -3.283 (17) 1983:12 1985:03 -13.718 (13)*** 1993:01 1993:05 

DLVMT -3.947 (16)*** -11.420 (7)*** -3.563 (12)* 1983:05 1983:11 - 14.725 (12)*** 2007:11 2010:02 
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Table 3 Estimates of dynamic CO2 emission-output relationships in bivariate models 

 Estimated Coefficients LR & SR 

Asymmetry 

(Model AA) 

LR 

Asymmetry 

& SR 

Symmetry 

(Model AS) 

LR 

Symmetry 

& SR 

Asymmetry 

(Model SA) 

LR & SR 

Symmetry 

 (Model SS) 

ρ -0.138*** -0.141*** -0.057** -0.046* 

θ - - 0.020* 0.017 

θ+ 0.078*** 0.081*** - - 

θ- 0.121*** 0.126*** - - 

𝜋0
+ 0.911*** - 0.921*** - 

𝜋0
− 0.738*** - 0.667** - 

∑ 𝜋𝑗
+𝑞−1

𝑗=1   0.523** - - - 

∑ 𝜋𝑗
−𝑞−1

𝑗=1   0.536* - 1.195*** - 

Normalized long-run estimates:     

β - - 0.346*** 0.365*** 

β+ 0.568*** 0.573*** - - 

β- 0.880*** 0.893*** - - 

Cointegration tests:     

FPSS 4.001 4.375 2.047 1.387 

tBDM -3.422** -3.539** -2.012 -1.665 

Symmetry tests: 

    WLR (Ho:𝛽+ = 𝛽− ) 15.617*** 17.278*** - - 

WSR(H0: 𝜋𝑗
+ = 𝜋𝑗

−for all j =0,…,q-1) 0.088 - 3.741* - 

Diagnostics tests: 

    �̅�  0.299 0.299 0.288 0.323 

LM(2) 3.221 2.267 5.041* 6.545** 

LM(12) 11.944 13.405 17.548 15.936 

ARCH(2) 7.574** 5.772* 8.916** 4.243 

ARCH(12) 24.085** 21.090** 25.299** 20.041* 

JB 21.606** 28.546*** 18.270*** 10.182*** 

Test for structural breaks     

Quandt-Andrews breakpoint test (a)     

SupF 37.478*** 32.216** 33.179** 30.657* 

ExpF 15.586*** 12.833**** 12.939** 10.587 

AveF 23.875*** 19.095 16.599* 14.929 

Notes: General-to-specific lag selection is employed for the NARDL estimation starting from an optimal 

max of 9 lags using a unidirectional 5% decision rule. Notations for the estimated coefficients are as in Eqs. (6) 

– (9). β’s are the long-run elasticities estimated from the normalized equations based on the NARDL models. 

Full NARDL estimation results are available upon request. “+” and “-” refer to positive and negative partial 

sums, respectively. tBDM is the t-statistic proposed by Banerjee et al. (1998) for testing ρ = 0 against ρ < 0 whilst 

FPSS is the F-test proposed by Pesaran et al. (2001) for the joint null of ρ = θ
+
 = θ

- 
= 0. The critical values for 

both statistics are tabulated in Pesaran et al. (2001). WLR and WSR are the long-run and short-run symmetrical 

Wald test on the null of 𝛽+ = 𝛽− and 𝜋𝑗
+ = 𝜋𝑗

−, respectively, for all j = 0,…, q-1. LM test is the Lagrange 

multiplier test for serial correlation, ARCH(k) is the autoregressive conditional heteroscedasticity test for 

detecting the present of ARCH effect, and JB test for normality. SupF, ExpF and AveF are Quandt-Andrews 

unknown breakpoint tests with the null of no breakpoints within 15% trimmed data. P-values for the test statistic 

are calculated according to Hansen (1997). 
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Table 4 Estimates of dynamic CO2 emission-output relationships in multivariate models of 

asymmetry 
Estimated                                                                                                                          

Coefficients 
(AA1) (AA2) (AA3) (AA4) (AA5) (AA6) (AA7) (AA8) (AA9) 

ρ -0.138*** -0.195*** -0.138*** -0.138*** -0.178*** -0.166*** -0.210*** -0.310*** -0.338*** 

θ+ 0.078*** 0.106*** 0.078*** 0.078*** 0.108*** 0.102*** 0.123*** 0.065*** 0.085*** 

θ- 0.121*** 0.150*** 0.121*** 0.121*** 0.167*** 0.158*** 0.187*** 0.184*** 0.214*** 

𝜋0
+ 0.910*** 0.943*** 0.911*** 0.910*** 0.875*** 0.877*** 0.887*** 0.999*** 1.093*** 

𝜋0
− 0.739*** 0.730*** 0.738*** 0.738*** 0.870*** 0.859*** 0.901*** 0.659*** 0.471** 

∑ 𝜋𝑗
+𝑞−1

𝑗=1   0.524** - 0.523** 0.523** - - - 0.567** - 

∑ 𝜋𝑗
−𝑞−1

𝑗=1   0.536** - 0.537* 0.536* - - -0.504* - - 

αDUM1 -0.002 - - - - - - - - 

αDUM2 - -0.006 - - - - - - - 

αDUM3 - - 3.16E-05 - - - - - - 

Normalized long-run estimates: 

β+ 0.569*** 0.543*** 0.569*** 0.568*** 0.607*** 0.613*** 0.585*** 0.211*** 0.252*** 

β- 0.881*** 0.766*** 0.881*** 0.880*** 0.936*** 0.953*** 0.887*** 0.591*** 0.634*** 

β+/β- 0.646*** 0.709*** 0.646*** 0.645*** 0.649*** 0.643*** 0.660*** 0.357*** 0.397*** 

βLHDD - - - -0.001 - -0.070*** - - -0.168*** 

βLCDD - - - 

 

-0.156*** -0.192*** - - -0.043** 

βLCGAS - - - - - - 0.065*** - 0.090*** 

βLVMT - - - - - - - 0.433*** 0.421*** 

Cointegration tests 

 FPss 3.980 8.370*** 3.992 2.994 13.365*** 11.777*** 8.579*** 11.953*** 9.206*** 

tBDM -3.411** -4.985** -3.416* -3.389* -4.860*** -4.532*** -5.370*** -6.715*** -7.301*** 

 Symmetry tests 

WLR 15.543*** 8.669*** 15.103*** 15.533*** 34.615*** 31.776*** 35.985*** 116.865*** 167.490*** 

WSR 0.086 0.223 0.086 0.086 0.0001 0.002 0.996 3.503* 2.555 

Diagnostics tests 

�̅�  0.297 0.282 0.297 0.297 0.416 0.426 0.302 0.3793 0.492 

LM(2) 3.326 8.425** 3.215 3.270 4.235 3.410 6.799** 0.9426 0.514 

LM(12) 12.106 21.380** 11.935 12.075 12.978 11.431 15.460 12.2684 15.323 

 ARCH(2) 7.579** 9.730*** 7.590** 7.573** 0.632 0.204 4.387 7.248** 0.066 

ARCH(12) 24.092** 26.674*** 24.076** 24.079** 15.113 13.742 21.441** 21.161** 19.580* 

JB 21.712*** 15.681*** 21.757*** 21.721*** 0.355 3.110 1.823 26.429*** 0.506 

Test for structural breaks: Quandt-Andrews breakpoint test (a) 

SupF - - - 37.347** 37.345** 36.914* 37.632* 34.761** 46.451 

ExpF - - - 15.561** 15.533** 15.492** 15.581* 13.933** 20.373 

AveF - - - 24.355** 25.825*** 27.660*** 23.102 21.711** 35.798 

Notes: “+” and “-” refer to positive and negative partial sums. 𝛼𝑖 refers to the coefficient of  dummy variable 

in the NARDL model where DUM1 = 1, for the period 2005:08, 0 otherwise; DUM2 = 1 for the period after 

2005:08, 0 otherwise; and DUM3 = is the interaction term between DUM2 with LCGAS(-1). Fpss is the F-test 

proposed by Pesaran et al. (2001) for the joint null of ρ = θ
+
 = θ

- 
= 0 whilst tBDM is the t-statistic proposed by 

Banerjee et al. (1998) for testing ρ = 0 against ρ < 0. The critical values for both statistics are tabulated in 

Pesaran et al. (2001). WLR and WSR are the long-run and short-run symmetrical Wald test, respectively, on the 

null of 𝛽+ = 𝛽−  and 𝜑𝑗
+ = 𝜑𝑗

− for all j =0,…,q-1. LM test is the Lagrange multiplier test for serial correlation, 

ARCH(k) is the autoregressive conditional heteroscedasticity test for detecting the present of ARCH effect, and 

Jarque Bera (JB) test for normality. SupF, ExpF and AveF are Quandt-Andrews unknown breakpoint tests with 

the null of no breakpoints within 15% trimmed data. P-values for the test statistic are calculated according to 

Hansen (1997). 
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Table 5 Further evidence from the model of long-run asymmetry with short-run symmetry  
 Estimated 

Coefficients 

(AS1) (AS2) (AS3) (AS4) (AS5) (AS6) (AS7) (AS8) (AS9) 

ρ -0.140*** -0.149*** -0.141*** -0.141*** -0.178*** -0.166*** -0.149*** -0.293*** -0.334*** 

θ+ 0.081*** 0.082*** 0.081*** 0.081*** 0.108*** 0.101*** 0.085*** 0.063*** 0.088*** 

θ- 0.126*** 0.116*** 0.126*** 0.125*** 0.167*** 0.158*** 0.131*** 0.174*** 0.216*** 

𝜋0  0.829*** 0.796*** 0.829*** 0.829*** 0.873*** 0.868*** 0.782*** 0.878*** 0.856*** 

∑ 𝜋𝑗
𝑞−1
𝑗=1   0.417** 0.400*** 0.417** 0.417** - - 0.374** 0.068** -0.290** 

αDUM1 -0.002 - - - - - - - - 

αDUM2 - -0.005 - - - - - - - 

αDUM3 - - 2.94E-05 - - - - - - 

Normalised long-run estimates 

β+ 0.573*** 0.551*** 0.573*** 0.573*** 0.607*** 0.613*** 0.568*** 0.215*** 0.263*** 

β- 0.893*** 0.777*** 0.894*** 0.893*** 0.935*** 0.952*** 0.878*** 0.594*** 0.646*** 

β+/ β- 0.642*** 0.709*** 0.641*** 0.642*** 0.649*** 0.644*** 0.647*** 0.362*** 0.406*** 

β LHDD - - - -0.001 - -0.070*** - - -0.174*** 

β LCDD - - - - -0.156*** -0.193*** - - -0.047** 

β LCGAS - - - - - - 0.008*** - 0.093*** 

β LVMT - - - - - - - 0.423*** 0.410*** 

Cointegration tests 

FPss 4.355 4.769 4.364 3.273 13.503*** 11.881*** 5.311** 10.980*** 9.438*** 

tBDM -3.529** -3.706** -3.535** -3.511* -4.902*** -4.566*** -3.790** -6.419*** -7.330*** 

Symmetry tests 

WLR 17.195*** 5.319** 16.630*** 17.202*** 34.712*** 31.794*** 18.694*** 104.293*** 165.035*** 

WSR - - - - - - - - - 

Diagnostics tests 

�̅�  0.298 0.301 0.298 0.298 0.418 0.428 0.305 0.384 0.495 

LM(2) 2.380 2.684 2.251 2.298 4.228 3.415 3.661 0.493 0.260 

LM(12) 13.285 13.762 13.416 13.441 12.976 11.438 13.168 15.498 15.975 

ARCH(2) 5.776** 6.091** 5.770* 5.771* 0.634 0.209 4.909* 6.503** 0.227 

ARCH(12) 21.097** 21.787** 21.068** 21.089** 15.117 13.762 19.033* 20.722* 16.288 

JB 28.579*** 27.242*** 28.705*** 28.560*** 0.355 3.099 15.373*** 23.821*** 0.595 

Test for structural breaks: Quandt-Andrews breakpoint test  

SupF - - - 32.089** 36.145** 35.680* 30.127 36.427** 49.344 

ExpF - - - 12.785** 14.787** 14.751** 12.040 13.860** 21.687 

AveF - - - 19.563** 23.962*** 25.702** 19.768** 21.685** 38.141 

Notes: As in Table 4. 

 

 

  


